Signal, Image and Video Processing

, Volume 11, Issue 6, pp 1139–1146 | Cite as

Detection of myocardial infarction from vectorcardiogram using relevance vector machine

  • R. K. TripathyEmail author
  • S. Dandapat
Original Paper


Myocardial infarction is a coronary artery ailment, and it is characterized by the changes in the morphological features such as the shape of T-wave, Q-wave and ST-segment of ECG signal. In clinical standard, it is a challenging problem to diagnose MI pathology using 12-lead ECG and vectorcardiogram (VCG). VCG has the advantage to record the heart electrical activities in three orthogonal planes (frontal, sagittal and transverse). This paper proposes a new method for automated detection or grading of MI pathology from vectorcardiogram (VCG) signals. The method uses relevance vector machine (RVM) classifier and the multiscale features of VCG signal for MI detection. The multiscale analysis of VCG signal is performed using dual-tree complex wavelet transform. The diagnostic features such as the complex wavelet sub-band (CWS) \(L_{1}\)-Norm (CWS \(L_{1}\)-norm) and the complex wavelet entropy (CWE) are evaluated from the sub-band complex wavelet coefficients of each orthogonal lead of VCG. The RVM classifier is considered to evaluate the performance of the combination of the CWS \(L_{1}\)-norm and the CWE features of VCG. Three different kernel functions such as Gaussian, bubble and Cauchy are used for RVM. The results show that the RVM classifier with Gaussian kernel function has an average accuracy, an average sensitivity and an average specificity values of 99.80, 99.67 and 99.90%, respectively. The performance of RVM classifier is compared with the existing methods for detection of MI from VCG and 12-lead ECG signals.


Vectorcardiogram Complex wavelet sub-band \(L_{1}\) Complex wavelet entropy Relevance vector machine Kernel functions Performance measures 


  1. 1.
    Goldberger, A.L.: Clinical Electrocardiography: A Simplified Approach. Elsevier Health Sciences, Amsterdam (2012)Google Scholar
  2. 2.
    Yang, H.: Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans. Biomed. Eng. 58(2), 339–347 (2011)CrossRefGoogle Scholar
  3. 3.
    Acharya, U.R., Fujita, H., Sudarshan, V.K., Oh, S.L., Adam, M., Koh, J.E., Tan, J.H., Ghista, D.N., Martis, R.J., Chua, C.K., et al.: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads. Knowl. Based Syst. 99, 146–156 (2016)CrossRefGoogle Scholar
  4. 4.
    Acharya, U.R., Fujita, H., Adam, M., Lih, O.S., Sudarshan, V.K., Hong, T.J., Koh, J.E., Hagiwara, Y., Chua, C.K., Poo, C.K., et al.: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ecg signals: A comparative study. Inf. Sci. 377, 17–29 (2017)CrossRefGoogle Scholar
  5. 5.
    Tranchesi, J., Teixeira, V., Ebaid, M., Boccalandro, I., Bocanegra, J., Pileggi, F.: The vectorcardiogram in dorsal or posterior myocardial infarction. Am. J. Cardiol. 7(4), 505–510 (1961)CrossRefGoogle Scholar
  6. 6.
    Sharma, L., Tripathy, R., Dandapat, S.: Multiscale energy and eigenspace approach to detection and localization of myocardial infarction. IEEE Trans. Biomed. Eng. 62(7), 1827–1837 (2015)CrossRefGoogle Scholar
  7. 7.
    Starr, J.W., Wagner, G.S., Draffin, R.M., Reed, J.B., Walston, A., Behar, V.S.: Vectorcardiographic criteria for the diagnosis of anterior myocardial infarction. Circulation 53(2), 229–234 (1976)CrossRefGoogle Scholar
  8. 8.
    Porée, F., Kervio, G., Carrault, G.: Ecg biometric analysis in different physiological recording conditions. Signal Image Video Process. 10(2), 267–276 (2016)CrossRefGoogle Scholar
  9. 9.
    Dawson, D., Yang, H., Malshe, M., Bukkapatnam, S.T., Benjamin, B., Komanduri, R.: Linear affine transformations between 3-lead (frank xyz leads) vectorcardiogram and 12-lead electrocardiogram signals. J. Electrocardiol. 42(6), 622–630 (2009)CrossRefGoogle Scholar
  10. 10.
    Martis, R.J., Acharya, U.R., Adeli, H.: Current methods in electrocardiogram characterization. Comput. Biol. Med. 48, 133–149 (2014)CrossRefGoogle Scholar
  11. 11.
    Al-Kindi, S.G., Ali, F., Farghaly, A., Nathani, M., Tafreshi, R.: “Towards real-time detection of myocardial infarction by digital analysis of electrocardiograms,” In: 2011 1st Middle East Conference on Biomedical Engineering, pp. 454–457, IEEE, (2011)Google Scholar
  12. 12.
    Arif, M., Malagore, I.A., Afsar, F.A.: Detection and localization of myocardial infarction using k-nearest neighbor classifier. J. Med. Syst. 36(1), 279–289 (2012)CrossRefGoogle Scholar
  13. 13.
    Banerjee, S., Mitra, M.: “Ecg feature extraction and classification of anteroseptal myocardial infarction and normal subjects using discrete wavelet transform,” In: Systems in Medicine and Biology (ICSMB), 2010 International Conference on, pp. 55–60, IEEE, (2010)Google Scholar
  14. 14.
    Banerjee, S., Mitra, M.: “A classification approach for myocardial infarction using voltage features extracted from four standard ecg leads,” In: Recent Trends in Information Systems (ReTIS), 2011 International Conference on, pp. 325–330, IEEE, (2011)Google Scholar
  15. 15.
    Safdarian, N., Dabanloo, N.J., Attarodi, G.: A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ecg signal. J. Biomed. Sci. Eng. 7(10), 818 (2014)CrossRefGoogle Scholar
  16. 16.
    Acharya, R., Krishnan, S.M., Spaan, J.A., Suri, J.S.: Advances in Cardiac Signal Processing. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bortolan, G., Christov, I.: “Myocardial infarction and ischemia characterization from t-loop morphology in vcg,” In: Computers in Cardiology 2001, pp. 633–636, IEEE, (2001)Google Scholar
  18. 18.
    Correa, R., Arini, P.D., Correa, L.S., Valentinuzzi, M., Laciar, E.: Novel technique for st-t interval characterization in patients with acute myocardial ischemia. Comput. Biol. Med. 50, 49–55 (2014)CrossRefGoogle Scholar
  19. 19.
    Dehnavi, A.R.M., Farahabadi, I., Rabbani, H., Farahabadi, A., Mahjoob, M.P., Dehnavi, N.R.: Detection and classification of cardiac ischemia using vectorcardiogram signal via neural network. J. Res. Med. Sci. 16(2), 136–142 (2011)Google Scholar
  20. 20.
    Yang, H., Bukkapatnam, S.T., Le, T., Komanduri, R.: Identification of myocardial infarction (mi) using spatio-temporal heart dynamics. Med. Eng. Phys. 34(4), 485–497 (2012)CrossRefGoogle Scholar
  21. 21.
    Lemire, D., Pharand, C., Rajaonah, J., Dube, B., LeBlanc, A.R.: Wavelet time entropy, t wave morphology and myocardial ischemia. IEEE Trans. Biomed. Eng. 47, 967–970 (2000)CrossRefGoogle Scholar
  22. 22.
    Oeff, M., Koch, H., Bousseljot, R., Kreiseler, D.: “The ptb diagnostic ecg database,” National Metrology Institute of Germany,, (2012)
  23. 23.
    Tripathy, R., Dandapat, S.: Detection of cardiac abnormalities from multilead ecg using multiscale phase alternation features. J. Med. Syst. 40(6), 1–9 (2016)CrossRefGoogle Scholar
  24. 24.
    Peker, M., Sen, B., Delen, D.: A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J. Biomed. Health Inf. 20(1), 108–118 (2016)CrossRefGoogle Scholar
  25. 25.
    Peker, M.: A new approach for automatic sleep scoring: combining taguchi based complex-valued neural network and complex wavelet transform. Comput. Methods Progr. Biomed. 129, 203–216 (2016)CrossRefGoogle Scholar
  26. 26.
    Sharma, L., Dandapat, S., Mahanta, A.: Kurtosis-based noise estimation and multiscale energy to denoise ecg signal. Signal Image Video Process. 7(2), 235–245 (2013)Google Scholar
  27. 27.
    Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)CrossRefGoogle Scholar
  28. 28.
    Das, A.B., Bhuiyan, M.I.H., Alam, S.S.: Classification of eeg signals using normal inverse gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image Video Process. 10(2), 259–266 (2016)CrossRefGoogle Scholar
  29. 29.
    Tripathy, R., Sharma, L., Dandapat, S.: Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40(4), 1–13 (2016)CrossRefGoogle Scholar
  30. 30.
    Balouchestani, M., Raahemifar, K., Krishnan, S.: Low sampling rate algorithm for wireless ecg systems based on compressed sensing theory. Signal Image Video Process. 9(3), 527–533 (2015)CrossRefGoogle Scholar
  31. 31.
    Jayachandran, E., et al.: Analysis of myocardial infarction using discrete wavelet transform. J. Med. Syst. 34(6), 985–992 (2010)CrossRefGoogle Scholar
  32. 32.
    Tipping, M.E.: “Sparse bayesian learning and the relevance vector machine”. J. Mach. Learn. Res. 1(Jun), 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Tipping, M.: “Relevance vector machine.”. US Patent 6,633,857, 14 Oct 2003Google Scholar
  34. 34.
    Demir, B., Erturk, S.: Hyperspectral image classification using relevance vector machines. IEEE Geosci. Remote Sens. Lett. 4(4), 586–590 (2007)CrossRefGoogle Scholar
  35. 35.
    Sim, J., Wright, C.C.: The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther. 85(3), 257–268 (2005)Google Scholar
  36. 36.
    Pan, J., Tompkins, W.J.: “A real-time qrs detection algorithm”. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)CrossRefGoogle Scholar
  37. 37.
    Fay, M.P., Proschan, M.A.: Wilcoxon–mann–whitney or t-test? on assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Correa, R., Arini, P.D., Correa, L., Valentinuzzi, M.E., Laciar, E.: Acute myocardial ischemia monitoring before and during angioplasty by a novel vectorcardiographic parameter set. J. Electrocardiol. 46(6), 635–643 (2013)CrossRefGoogle Scholar
  39. 39.
    Correa, R., Arini, P.D., Valentinuzzi, M.E., Laciar, E.: Novel set of vectorcardiographic parameters for the identification of ischemic patients. Med. Eng. Phys. 35(1), 16–22 (2013)CrossRefGoogle Scholar
  40. 40.
    Hedén, B., Öhlin, H., Rittner, R., Edenbrandt, L.: Acute myocardial infarction detected in the 12-lead ecg by artificial neural networks. Circulation 96(6), 1798–1802 (1997)CrossRefGoogle Scholar
  41. 41.
    Sun, L., Lu, Y., Yang, K., Li, S.: Ecg analysis using multiple instance learning for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59(12), 3348–3356 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations