Advertisement

Signal, Image and Video Processing

, Volume 11, Issue 5, pp 945–952 | Cite as

Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation

  • Anindita Septiarini
  • Agus Harjoko
  • Reza Pulungan
  • Retno Ekantini
Original Paper

Abstract

This research proposes a robust method for disc localization and cup segmentation that incorporates masking to avoid misclassifying areas as well as forming the structure of the cup based on edge detection. Our method has been evaluated using two fundus image datasets, namely: D-I and D-II comprising of 60 and 38 images, respectively. The proposed method of disc localization achieves an average \(F_{\mathrm{score}}\) of 0.96 and average boundary distance of 7.7 for D-I, and 0.96 and 9.1, respectively, for D-II. The cup segmentation method attains an average \(F_{\mathrm{score}}\) of 0.88 and average boundary distance of 13.8 for D-I, and 0.85 and 18.0, respectively, for D-II. The estimation errors (mean ± standard deviation) of our method for the value of vertical cup-to-disc diameter ratio against the result of the boundary by the expert of D-I and D-II have similar value, namely \(0.04 \pm 0.04\). Overall, the result of our method indicates its robustness for glaucoma evaluation.

Keywords

Glaucoma Disc segmentation Cup segmentation Thresholding Morphology 

Notes

Acknowledgements

The authors would like to thank Dr. Sardjito Hospital and Dr. YAP Eye Hospital in Yogyakarta, Indonesia, for providing the fundus images.

References

  1. 1.
    Quigley, H.A.: Number of people with glaucoma worldwide. Br. J. Ophthalmol. 80(5), 389–393 (1996)CrossRefGoogle Scholar
  2. 2.
    Choplin, N.T., Lundy, D.C. (eds.): Atlas of Glaucoma, 2nd edn. Informa Healthcare, London (2007)Google Scholar
  3. 3.
    Hatanaka, Y., Fukuta, K., Muramatsu, C., Sawada, A., Hara, T., Yamamoto, T., Fujita, H.: Automated measurement of cup-to-disc ratio for diagnosing glaucoma in retinal fundus images. IFMBE Proc. 25/XI 25, 198–200 (2009)CrossRefGoogle Scholar
  4. 4.
    Muramatsu, C., Nakagawa, T., Sawada, A., Hatanaka, Y., Hara, T., Yamamoto, T., Fujita, H.: Determination of cup and disc ratio of optical nerve head for diagnosis of glaucoma on stereo retinal fundus image pairs. Proc. SPIE 7260, 1–8 (2009)Google Scholar
  5. 5.
    Mary, M.C.V.S., Rajsingh, E.B., Jacob, J.K.K., Anandhi, D., Amato, U., Selvan, S.E.: An empirical study on optic disc segmentation using an active contour model. Biomed. Signal Process. Control 18, 19–29 (2015)CrossRefGoogle Scholar
  6. 6.
    Mittapalli, P.S., Kande, G.B.: Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed. Signal Process. Control 24, 34–46 (2016)CrossRefGoogle Scholar
  7. 7.
    Fondón, I., Núñez, F., Tirado, M., Jiménez, S.: Automatic cup-to-disc ratio estimation using active contours and color clustering in fundus images for glaucoma diagnosis. In: International Conference on Image Analysis and Recognition, pp. 390–399. Springer (2012)Google Scholar
  8. 8.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.R.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011)CrossRefGoogle Scholar
  9. 9.
    Tjandrasa, H., Wijayanti, A., Suciati, N.: Optic nerve head segmentation using hough transform and active contours. Telkomnika 10(3), 531–536 (2012)CrossRefGoogle Scholar
  10. 10.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wing, D., Wong, K., Tan, N.M., Tao, D.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 36(6), 1019–1032 (2013)CrossRefGoogle Scholar
  11. 11.
    Dutta, M.K., Mourya, A.K., Singh, A., Parthasarathi, M., Burget, R., Riha, K.: Glaucoma detection by segmenting the super pixels from fundus colour retinal images. In: 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), pp. 86–90. IEEE (2014)Google Scholar
  12. 12.
    Tan, N.M., Xu, Y., Goh, W.B., Liu, J.: Robust multi-scale superpixel classification for optic cup localization. Comput. Med. Imaging Graph. 40, 182–193 (2015)CrossRefGoogle Scholar
  13. 13.
    Ho, C.Y., Pai, T.W., Chang, H.T., Chen, H.Y.: An automatic fundus image analysis system for clinical diagnosis of glaucoma. In: Intelligent, and Software Intensive Systems an International Conference on Complex (2011)Google Scholar
  14. 14.
    Kavitha, S., Karthikeyan, S., Duraiswamy, K.: Early detection of glaucoma in retinal images using cup to disc ratio. In: 2010 2nd International Conference on Computing, Communication and Networking Technologies, vol. 2, pp. 1–5. IEEE (2010)Google Scholar
  15. 15.
    Khalid, N.E.A., Noor, N.M., Ariff, N.: Fuzzy c-means (FCM) for optic cup and disc segmentation with morphological operation. Proc. Comput. Sci. 42, 255–262 (2014)CrossRefGoogle Scholar
  16. 16.
    Narasimhan, K., Vijayarekha, K.: An efficient automated system for glaucoma detection using fundus image. J. Theor. Appl. Inf. Technol. 33(1), 104–110 (2011)Google Scholar
  17. 17.
    Nayak, J., Acharya, U.R., Bhat, P.S., Shetty, N., Lim, T.C.: Automated diagnosis of glaucoma using digital fundus images. J. Med. Syst. 33, 337–346 (2008)Google Scholar
  18. 18.
    Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)CrossRefGoogle Scholar
  19. 19.
    Sinha, N., Babu, R.V.: Optic disk localization using L1 minimization. In: Proceedings of the 19th IEEE International Conference on Image Processing (ICIP 12), pp. 2829–2832 (2012)Google Scholar
  20. 20.
    Welfer, D., Scharcanski, J., Kitamura, C.M., Pizzol, M.M.D., Ludwig, L.W.B., Marinho, D.R.: Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput. Biol. Med. 40(2), 124–137 (2010)CrossRefGoogle Scholar
  21. 21.
    Yin, F., Liu, J., Wing, D., Wong, K., Tan, N.M., Cheung, C.: Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th International Symposium on Computer-Based Medical Systems (CBMS) (2012)Google Scholar
  22. 22.
    Aquino, A., Gegundez-Arias, M.E., Marn, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010)CrossRefGoogle Scholar
  23. 23.
    Pourreza-Shahri, R., Tavakoli, M., Kehtarnavaz, N.: Computationally efficient optic nerve head detection in retinal fundus images. Biomed. Signal Process. Control 11, 63–73 (2014)CrossRefGoogle Scholar
  24. 24.
    Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83, 902–910 (1999)CrossRefGoogle Scholar
  25. 25.
    Ahmad, H., Yamin, A., Shakeel, A., Gillani, S.O., Ansari, U.: Detection of glaucoma using retinal fundus images. In: 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering, iCREATE 2014—Proceedings, pp. 321–324 (2014)Google Scholar
  26. 26.
    Marin, D., Gegundez-Arias, M.E., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Methods Programs Biomed. 118(2), 173–185 (2015)CrossRefGoogle Scholar
  27. 27.
    Foracchia, M., Grisan, E., Ruggeri, A.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans. Med. Imaging 23(10), 1189–1195 (2004)CrossRefGoogle Scholar
  28. 28.
    Rahman, R., Kabir, S.M.R, Quadir, A.: Intelligent detection of foveal zone from colored fundus images of human retina through a robust combination of fuzzy-logic and active contour model. In: Awad, A.I., Hassaballah, M. (eds.) Image Feature Detectors and Descriptors, pp. 305–344. Springer, Cham (2016)Google Scholar
  29. 29.
    Ahmed, M.I., Amin, M.A.: High speed detection of optical disc in retinal fundus image. SIViP 9, 77–85 (2015)CrossRefGoogle Scholar
  30. 30.
    Jayanthi, G., Sagayee, G.M.A., Arumugam, S.: Glaucoma detection in retinal image using medial axis detection and level set method. Int. J. Comput. Appl. 93(3), 42–48 (2014)Google Scholar
  31. 31.
    Fumero, F., Alayon, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: Proceedings—IEEE Symposium on Computer-Based Medical Systems, pp. 2–7 (2011)Google Scholar
  32. 32.
    Almazroa, A., Burman, R., Raahemifar, K., Lakshminarayanan, V.: Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J. Ophthalmol. 2015, 1–28 (2015)CrossRefGoogle Scholar
  33. 33.
    Fraga, A., Barreira, N., Ortega, M., Penedo, M.G., Carreira, M.J.: Precise segmentation of the optic disc in retinal fundus images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin (2012)Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Anindita Septiarini
    • 1
    • 3
  • Agus Harjoko
    • 1
  • Reza Pulungan
    • 1
  • Retno Ekantini
    • 2
  1. 1.Department of Computer Science and Electronics, Faculty of Mathematics and Natural SciencesUniversitas Gadjah MadaYogyakartaIndonesia
  2. 2.Faculty of MedicineUniversitas Gadjah MadaYogyakartaIndonesia
  3. 3.Department of Computer ScienceMulawarman UniversitySamarindaIndonesia

Personalised recommendations