Signal, Image and Video Processing

, Volume 10, Issue 8, pp 1449–1456 | Cite as

Random bounce algorithm: real-time image processing for the detection of bats and birds

Algorithm description with application examples from a laboratory flight tunnel and a field test at an onshore wind energy plant
  • Nikolas Scholz
  • Jochen Moll
  • Moritz Mälzer
  • Konstantin Nagovitsyn
  • Viktor Krozer
Original Paper


Wind energy plants generate an impact on wildlife with significant fatality rates for various bat and bird species, e.g. due to a collision with the rotor blades. Monitoring approaches, such as vision-based systems, are needed to reduce their mortality by means of an optimized turbine control strategy as soon as flying animals are detected. Since manual analysis of the video data is ineffective, automatic video processing with real-time capabilities is required. In this paper, we propose the random bounce algorithm (RBA) as a novel real-time image processing method for vision-based detection of bats and birds. The RBA is combined with object tracking in order to extract flight trajectories. Its performance is compared with connected components object detection. Results from a laboratory flight tunnel as well as from a field study at a 2 MW wind energy plant in Southern Germany will be presented and discussed. We have successfully detected and tracked objects both in laboratory experiments with many animals and in field experiments with individual animals at a frame rate of 10 fps.


Random bounce algorithm Camera-based detection of bats and birds Video object segmentation Wildlife monitoring Wind energy plants 



This work is part of the B\(^2\)-Monitor project “Millimeter-Waves for Monitoring Bats and Blades” and is financially supported by the Federal Ministry for Economic Affairs and Energy (grant number: FKZ 0325791A). More information can be found at The authors are grateful to Mr. Dürr (Volta Windkraft GmbH, Ochsenfurt, Germany) for the installation of the camera system at the wind energy plant. Moreover, the authors would like to thank Prof. Kössl (Goethe University of Frankfurt, Institute for Cell Biology and Neuroscience) for the bat experiments in the laboratory flight tunnel.

Supplementary material

11760_2016_951_MOESM1_ESM.avi (24.3 mb)
Supplementary material 1 (avi 24852 KB)
11760_2016_951_MOESM2_ESM.mp4 (6.2 mb)
Supplementary material 2 (mp4 6321 KB)
11760_2016_951_MOESM3_ESM.mp4 (358 kb)
Supplementary material 3 (mp4 358 KB)
11760_2016_951_MOESM4_ESM.mp4 (259 kb)
Supplementary material 4 (mp4 258 KB)


  1. 1.
    Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recognit. Lett. 34(1), 3–19 (2013)CrossRefGoogle Scholar
  2. 2.
    Sivaraman, S., Trivedi, M.M.: A review of recent developments in vision-based vehicle detection. Intelligent Vehicles Symposium (IV), IEEE, (2013), pp. 310–315Google Scholar
  3. 3.
    Shukla, A.P., Saini, M.: Moving object tracking of vehicle detection: a concise review. Int. J. Signal Process. Image Process. Pattern Recognit. 8(3), 169–176 (2015)CrossRefGoogle Scholar
  4. 4.
    Cetin, A.E., Dimitropoulos, K., Gouverneur, B., Grammalidis, N., Günay, O., Habiboglu, Y.H., Töreyin, B.U., Verstockt, S.: Video fire detection–review. Digit. Signal Process. 23(6), 1827–1843 (2013)CrossRefGoogle Scholar
  5. 5.
    Rydell, J., Engström, H., Hedenström, A., Larsen, J., Pettersson, J., Green, M.: The effect of wind power on birds and bats - A Synthesis, ser. 6511. Swedish Environmental Protection Agency, (2012)Google Scholar
  6. 6.
    Schuster, E., Bulling, L., Köppel, J.: Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects. Environ. Manag. 56(2), 300–331 (2015)CrossRefGoogle Scholar
  7. 7.
    Arnett, E.B., Baerwald, E.F., Mathews, F., Rodrigues, L., Rodríguez-Durán, A., Rydell, J., Villegas-Patraca, R., Voigt, C.C.: Impacts of wind energy development on bats: a global perspective. In: Voigt, C.C., Kingston, T. (eds.) Bats in the Anthropocene: Conservation of Bats in a Changing World, pp. 295–323. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  8. 8.
    Horn, J.W., Arnett, E.B., Kunz, T.H.: Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 72(1), 123–132 (2008)CrossRefGoogle Scholar
  9. 9.
    Robinson Willmott, J., Forcey, G.M., Hooton, L.A.: Developing an automated risk management tool to minimize bird and bat mortality at wind facilities. Ambio 44(S4), 557–571 (2015)CrossRefGoogle Scholar
  10. 10.
    Spampinato, C., Farinella, G., Boom, B., Mezaris, V., Betke, M., Fisher, R.B.: Special issue on animal and insect behaviour understanding in image sequences. EURASIP J. Image Video Process. 2015(1), 1 (2015)CrossRefGoogle Scholar
  11. 11.
    Yong, S.-P., Deng, J.D., Purvis, M.K.: Wildlife video key-frame extraction based on novelty detection in semantic context. Multimed. Tools Appl. 62(2), 359–376 (2013)CrossRefGoogle Scholar
  12. 12.
    Calic, J., Campbell, N., Calway, A., Mirmehdi, M., Burghardt, T., Hannuna, S., Kong, C., Porter, S., Canagarajah, N., Bull, D.: Towards intelligent content based retrieval of wildlife videos, in Proceedings of the 6th International Workshop on Image Analysis for Multi-media Interactive Services (WIAMIS’05). Citeseer, (2005)Google Scholar
  13. 13.
    Christiansen, P., Steen, K., Jørgensen, R., Karstoft, H.: Automated detection and recognition of wildlife using thermal cameras. Sensors 14(8), 13778–13793 (2014)CrossRefGoogle Scholar
  14. 14.
    Burghardt, T., Calic, J.: Analysing animal behaviour in wildlife videos using face detection and tracking. IEEE Proc. Vis. Image Signal Process. 153(3), 305–312 (2006)CrossRefGoogle Scholar
  15. 15.
    Figueroa, K., Camarena-Ibarrola, A., García, J., Villela, H.: Fast automatic detection of wildlife. In: Bayro-Corrochano, E., Hancock, E. (eds.) Images in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, ser. Lecture Notes in Computer Science, pp. 940–947. Springer International Publishing, Cham (2014)Google Scholar
  16. 16.
    Barnich, O., Van Droogenbroeck, M.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cullinan, V.I., Matzner, S., Duberstein, C.A.: Classification of birds and bats using flight tracks. Ecol. Inform. 27, 55–63 (2015)CrossRefGoogle Scholar
  18. 18.
    Gómez, A., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks, CoRR, abs/1603.06169, 2016 Google Scholar
  19. 19.
    Okuyama, J., Nakajima, K., Matsui, K., Nakamura, Y., Kondo, K., Koizumi, T., Arai, N.: Application of a computer vision technique to animal-borne video data: extraction of head movement to understand sea turtles’ visual assessment of surroundings. Anim. Biotelemetry 3(1), 1–11 (2015)CrossRefGoogle Scholar
  20. 20.
    Gronskyte, R., Clemmensen, L.H., Hviid, M.S., Kulahci, M.: Pig herd monitoring and undesirable tripping and stepping prevention. Comput. Electron. Agric. 119, 51–60 (2015)CrossRefGoogle Scholar
  21. 21.
    Nasirahmadi, A., Richter, U., Hensel, O., Edwards, S., Sturm, B.: Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 119, 184–190 (2015)CrossRefGoogle Scholar
  22. 22.
    Gronskyte, R., Clemmensen, L.H., Hviid, M.S., Kulahci, M.: Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms. Biosyst. Eng. 141, 19–30 (2016)CrossRefGoogle Scholar
  23. 23.
    van Gemert, J.C., Verschoor, C.R., Mettes, P., Epema, K., Koh, L.P., Wich, S.: Nature conservation drones for automatic localization and counting of animals. in Computer Vision-ECCV, : Workshops. Springer, 255–270 (2014)Google Scholar
  24. 24.
    Gonzalez, L., Montes, G., Puig, E., Johnson, S., Mengersen, K., Gaston, K.: Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1), 97 (2016)CrossRefGoogle Scholar
  25. 25.
    Ebner, B., Starrs, D., Morgan, D., Fulton, C., Donaldson, J., Doody, J., Cousins, S., Kennard, M., Butler, G., Tonkin, Z., Beatty, S., Broadhurst, B., Clear, R., Lintermans, M., Fletcher, C.: Emergence of field-based underwater video for understanding the ecology of freshwater fishes and crustaceans in Australia. J. R. Soc. West. Aust. 97, 287–296 (2014)Google Scholar
  26. 26.
    Kashiha, M.A., Green, A.R., Sales, T.G., Bahr, C., Berckmans, D., Gates, R.S.: Performance of an image analysis processing system for hen tracking in an environmental preference chamber. Poult. Sci. 93(10), 2439–2448 (2014)CrossRefGoogle Scholar
  27. 27.
    Rowcliffe, J.M., Jansen, P.A., Kays, R., Kranstauber, B., Carbone, C.: Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sens. Ecol. Conserv. (2016)Google Scholar
  28. 28.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81(3), 231–268 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Hedenström, A., Johansson, L.C., Spedding, G.R.: Bird or bat: comparing airframe design and flight performance. Bioinspir. Biomim. 4(1), 015001 (2009)CrossRefGoogle Scholar
  30. 30.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  31. 31.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  32. 32.
    He, Lifeng, Yuyan, Chao, Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Trans. Image Process. 17(5), 749–756 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Stewart, P.D., Ellwood, S.A., Macdonald, D.W.: Remote video-surveillance of wildlife -an introduction from experience with the European badger meles meles. Mamm. Rev. 27(4), 185–204 (1997)CrossRefGoogle Scholar
  34. 34.
    Brown, J., Gehrt, S.D.: The Basics of Using Remote Cameras to Monitor Wildlife, Ohio State University Extension Agriculture and Natural Resources Fact Sheet W-21-09 Ohio Sate University. OH, Columbus (2009)Google Scholar
  35. 35.
    Kays, R., Tilak, S., Kranstauber, B., Jansen, P.A., Carbone, C., Rowcliffe, M.J., Fountain, T., Eggert, J., He, Z.: Monitoring wild animal communities with arrays of motion sensitive camera traps. arXiv:1009.5718 (2010)
  36. 36.
    Foster, R.J., Harmsen, B.J.: A critique of density estimation from camera-trap data. J. Wildl. Manag. 76(2), 224–236 (2012)CrossRefGoogle Scholar
  37. 37.
    Moll, J., Mälzer, M., Scholz, B., Krozer, V., Pozdniakov, D., Salman, R., Zimmermann, R., Hechavarria, J., Beetz, J., Kössl, M.: Radar-based detection of bats: experiments in a laboratory flight tunnel. In: 10th European Conference on Antennas and Propagation Davos, Switzerland. doi: 10.1109/EuCAP.2016.7481643 (2016)
  38. 38.
    Moll, J., Mälzer, M., Scholz, N., Krozer, V., Dürr, M., Pozdniakov, D., Salman, R., Zimmermann, R., Scholz, M.: Radar-based detection of birds near wind energy plants: first experiences from a field study. In: 10th German Microwave Conference, pp. 239–242. doi: 10.1109/GEMIC.2016.7461600 (2016)

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Nikolas Scholz
    • 1
  • Jochen Moll
    • 1
  • Moritz Mälzer
    • 1
  • Konstantin Nagovitsyn
    • 1
  • Viktor Krozer
    • 1
  1. 1.Goethe University of Frankfurt am Main FrankfurtGermany

Personalised recommendations