Skip to main content

Advertisement

Log in

Orthogonal wideband hybrid-coding radar waveforms design

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

To obtain wideband orthogonal waveforms of radar systems with high-range resolution and good correlation properties, this paper proposes two types of orthogonal wideband hybrid-coding waveforms, polyphase discrete frequency (PDF) waveforms and polyphase signed-chirp (PSC) waveforms. Using an intra-pulse hybrid modulation, high-range resolution can be obtained, and good correlation properties between different waveforms are easier to optimize within a larger optimization space. Specifically, good correlation properties of the PDF waveforms are indeed easier to achieve without a loss of range resolution, as occurs with a discrete frequency coding waveform. Compared with polyphase coding waveforms, the signal bandwidth of each PSC waveform is twice as large as that of sub-pulse chirp signals, and superior correlation properties are obtained. Finally, various designed waveforms optimized by the genetic algorithm are provided to demonstrate the effectiveness of these proposed wideband hybrid-coding waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deng, H.: Polyphase code design for orthogonal netted radar systems. IEEE Trans. Signal Process. 52(11), 3126–3135 (2004)

    Article  Google Scholar 

  2. Chernyak, V.S.: Fundamentals of Multisite Radar Systems, Multistatic Radars and Multiradar Systems. Gordon and Breach Science Publishers, London (1998)

    Google Scholar 

  3. Li, J., Stoica, P.: MIMO Radar Signal Processing. Wiley, New York (2009)

    Google Scholar 

  4. Xu, J., Dai, X.Z., Xia, X.G., Wang, L.B., et al.: Optimizations of multisite radar system with MIMO radars for target detection. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2329–2343 (2011)

    Article  Google Scholar 

  5. Khan, H.A., Zhang, Y.Y., et al.: Optimizing polyphase sequences for orthogonal netted radar. IEEE Signal Process. Lett. 13(10), 589–592 (2006)

    Article  Google Scholar 

  6. Deng, H.: Discrete frequency-coding waveform design for netted radar systems. IEEE Signal Process. Lett. 11(2), 179–182 (2004)

    Article  Google Scholar 

  7. Liu, B., He, Z.S.: Orthogonal discrete frequency-coding waveform design for MIMO radar. J. Electr. (China) 25(4), 471–476 (2008)

    Article  Google Scholar 

  8. Liu, B., He, Z.S.: Comments on ‘Discrete frequency-coding waveform design for netted radar systems’. IEEE Signal Process. Lett. 15, 449–451 (2008)

    Article  Google Scholar 

  9. Deng, H.: Reply to “comments on ‘Discrete frequency-coding waveform design for netted radar systems”’. IEEE Signal Process. Lett. 15, 452 (2008)

    Article  Google Scholar 

  10. Singh, S.P., Rao, K.S.: Discrete frequency-coded radar signal design. IET Signal Process. 3(1), 7–16 (2009)

    Article  Google Scholar 

  11. Wang, W.Q.: Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE Trans. Geosci. Remote Sens. 49(8), 3094–3104 (2011)

    Article  Google Scholar 

  12. Qureshi, T.R., Zoltowski, M.D., Calderbank, R., Pezeshki, A.: Unitary design of radar waveform diversity sets. Digital Signal Process. 21, 552–567 (2011)

    Article  Google Scholar 

  13. Krieger, G.: MIMO-SAR: opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 52(5), 2628–2645 (2014)

    Article  Google Scholar 

  14. Li, J., Stoica, P., Zheng, X.: Signal synthesis and receiver design for MIMO radar imaging. IEEE Trans. Signal Process. 56(8), 3959–3968 (2008)

    Article  MathSciNet  Google Scholar 

  15. Stoica, P., Li, J., Xue, M.: On binary probing signals and instrumental variables receivers for radar. IEEE Trans. Inf. Theory 54(8), 3820–3825 (2008)

  16. Hua, G., Saman, S.: Receiver design for range and Doppler sidelobe suppression using MIMO and phased-array radar. IEEE Trans. Signal Process. 61(6), 1315–1326 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zhang, J., Wang, H., Zhu, X.: Adaptive waveform design for seperated transmit/receive ULA-MIMO radar. IEEE Trans. Signal Process. 58(9), 4936–4942 (2010)

    Article  MathSciNet  Google Scholar 

  18. Tang, B., Tang, J., Peng, Y.N.: MIMO radar waveform design in colored noise based on information theory. IEEE Trans. Signal Process. 58(9), 4684–4697 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tang, B., Tang, J., Peng, Y.N.: Waveform optimization for MIMO radar in colorednoise: further results for estimation-oriented criteria. IEEE Trans. Signal Process. 60(3), 1517–1522 (2012)

    Article  MathSciNet  Google Scholar 

  20. Chen, Y.F., Nijsure, Y., Yuen, C., et al.: Adaptive distributed MIMO radar waveform optimization based on mutual information. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1374–1385 (2013)

    Article  Google Scholar 

  21. Cui, G.L., Li, H.B., Rangaswamy, M.: MIMO radar waveform design with constant modulus and similarity constraints. IEEE Trans. Signal Process. 62(2), 343–353 (2014)

    Article  MathSciNet  Google Scholar 

  22. Levanon, N., Mozeson, E.: Radar Signals. Wiley, Hoboken (2004)

    Book  Google Scholar 

  23. Zhang, Y., Wang, J.: Improved design of DFCW for MIMO radar. Electron. Lett. 45(5), 285–U66 (2009)

    Article  MathSciNet  Google Scholar 

  24. Liu, B.: Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes. IEEE Trans. Aerosp. Electron. Syst. 45(4), 1650–1657 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the department of automatic control and systems engineering of the University of Sheffield, UK, who developed the genetic algorithm toolbox that is available at the homepage of http://www.shef.ac.uk/acse/research/ecrg/gat.html. Besides, we also thank the anonymous reviewers for their comments, which are crucial in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi He.

Additional information

National Natural Science Foundation of China (Nos. 61201451, 61179015 and 41301397).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gao, F., Xu, J. et al. Orthogonal wideband hybrid-coding radar waveforms design. SIViP 11, 103–111 (2017). https://doi.org/10.1007/s11760-016-0905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0905-6

Keywords

Navigation