Skip to main content

Sparse representation-based human detection: a scale-embedded dictionary approach


Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Krishna Vinay, G., Haque, Sk. M., Venkatesh Babu, R., Ramakrishnan, K.R.: Human detection using sparse representation. In: ICASSP (2012)

  2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  3. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: CVPR (2008)

  4. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2001)

    Article  Google Scholar 

  5. Mohan, A., Papageorgiou, C., Poggio, T.: Example based object detection in images by components. IEEE Trans. Pattern Anal. Mach. Intel. 23, 349–361 (2001)

    Article  Google Scholar 

  6. Laptev, I.: Improvements of object detection using boosted histograms. In: BMVC (2006)

  7. Felzenszwalb, P., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intel. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  8. Liu, Y., Zeng, L., Huang, Y.: An efficient HOG—ALBP feature for pedestrian detection. Signal Image Video Process. 8(1), 125–134 (2014)

    Article  Google Scholar 

  9. Takarli, F., Aghagolzadeh, A., Seyedarabi, H.: Combination of high-level features with low-level features for detection of pedestrian. Signal Image Video Process. 1–9 (2014). doi:10.1007/s11760-014-0706-8

  10. Xu, R., Zhang, B., Ye, Q., Jiao, J.: Human detection in images via \(l_1\)-norm minimization learning. In: ICASSP (2010)

  11. Xu, R., Zhang, B., Ye, Q., Jiao, J.: Cascaded \(l_1\)-norm minimization learning (CLML) for human detection. In: CVPR (2010)

  12. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intel. 31(2), 210–227 (2009)

  13. Wang, X., Wang, Y., Wan, W., Hwang, J.-N.: Object tracking with sparse representation and annealed particle filter. Signal Image Video Process. 8(6), 1059–1068 (2014)

    Article  Google Scholar 

  14. Sivalingam, R., Somasundaram, G., Morellas, V., Papanikolopoulos, N., Lotfallah, O., Park, Y.: Dictionary learning based object detection and counting in traffic scenes. In: ICDSC (2010)

  15. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intel. 33(11), 2259–2272 (2011)

    Article  Google Scholar 

  16. Naresh Kumar, M.S., Parate Priti, Venkatesh Babu, R.: Fragment-based real-time object tracking: A sparse representation approach. In: ICIP (2012)

  17. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  18. Sinha, N., Venkatesh Babu, R.: Optic disk localization using \(l_1\) minimization. In: ICIP (2012)

  19. Guo, K., Ishwar, P., Konrad, J.: Action recognition using sparse representation on covariance manifolds of optical flow. In: ICIP (2010)

  20. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 209, 237–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(l\)1-norm solution is also the sparsest solution. Comm. Pure Appl. Math 59, 797–829 (2004)

    Article  MathSciNet  Google Scholar 

  22. Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted \(l_1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: CVPR (2005)

  24. Overett, G., Petersson, L., Brewer, N., Andersson, L., Pettersson, N.: A new pedestrian dataset for supervised learning. In: IEEE Intelligent Vehicles Symposium, pp. 373–378 (2008)

  25. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Venkatesh Babu.

Additional information

An earlier brief version of this paper has appeared in ICASSP-2012 [1].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishna Vinay, G., Haque, S.M., Venkatesh Babu, R. et al. Sparse representation-based human detection: a scale-embedded dictionary approach. SIViP 10, 585–592 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Human detection
  • Histogram of oriented gradients (HOG)
  • \(l_{1}\)-Norm minimization
  • Sparse representation
  • Sparse classification
  • Scale-embedded dictionary