Signal, Image and Video Processing

, Volume 10, Issue 2, pp 413–420 | Cite as

A direct approach for object detection with catadioptric omnidirectional cameras

  • Ibrahim Cinaroglu
  • Yalin BastanlarEmail author
Original Paper


In this paper, we present an omnidirectional vision-based method for object detection. We first adopt the conventional camera approach that uses sliding windows and histogram of oriented gradients (HOG) features. Then, we describe how the feature extraction step of the conventional approach should be modified for a theoretically correct and effective use in omnidirectional cameras. Main steps are modification of gradient magnitudes using Riemannian metric and conversion of gradient orientations to form an omnidirectional sliding window. In this way, we perform object detection directly on the omnidirectional images without converting them to panoramic or perspective images. Our experiments, with synthetic and real images, compare the proposed approach with regular (unmodified) HOG computation on both omnidirectional and panoramic images. Results show that the proposed approach should be preferred.


Catadioptric omnidirectional cameras Object detection  Human detection Car detection Vehicle detection  

Supplementary material

11760_2015_768_MOESM1_ESM.pdf (196 kb)
Supplementary material 1 (pdf 195 KB)
11760_2015_768_MOESM2_ESM.pdf (912 kb)
Supplementary material 2 (pdf 912 KB)


  1. 1.
    Agarwal, S., Roth, D.: Learning a sparse representation for object detection. European Conference on Computer Vision (ECCV) (2002)Google Scholar
  2. 2.
    Amaral, F.H., Costa, A.H.R.: Object Class Detection in Omnidirectional Images. Workshop de Visao Computacional (WVC) (2009)Google Scholar
  3. 3.
    Arican, Z., Frossard, P.: OMNISIFT: Scale Invariant Features in Omnidirectional Images. In: IEEE 17th International Conference on Image Processing (ICIP) (2010)Google Scholar
  4. 4.
    Bogdanova, I., Bresson, X., Thiran, J.P., Vandergheynst, P.: Scale space analysis and active contours for omnidirectional images. IEEE Trans. Image Process. 16(7), 1888–1901 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bulow, T.: Spherical diffusion for 3D surface smoothing. IEEE Trans. PAMI 25, 1650–1654 (2004)CrossRefGoogle Scholar
  6. 6.
    Cinaroglu, I., Bastanlar, Y.: A direct approach for human detection with catadioptric omnidirectional cameras. In: IEEE Conference on Signal Processing and Communications Applications (2014)Google Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  8. 8.
    Daniilidis, K., Makadia, A., Bulow, T.: Image processing in catadioptric planes: spatiotemporal derivatives and optical flow computation. In: International Workshop on Omnidirectional Vision (OmniVis) (2002)Google Scholar
  9. 9.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. PAMI 34(4), 743–761 (2012)CrossRefGoogle Scholar
  10. 10.
    Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model, computer vision and pattern recognition (CVPR) (2008)Google Scholar
  11. 11.
    Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical applications. In: European Conference on Computer Vision (ECCV) (2000)Google Scholar
  12. 12.
    Hansen, P. Corke, P., Boles, W., Daniilidis, K.: Scale Invariant Features on the Sphere. In: IEEE International Conference on Computer Vision (ICCV) (2007)Google Scholar
  13. 13.
    Iraqui, A., Dupuis, Y., Boutteau, R., Ertaud, J., Savatier, X.: Fusion of omnidirectional and PTZ cameras for face detection and tracking. In: International Conference on Emerging Security Technologies (2010)Google Scholar
  14. 14.
    Kang, S., Roh, A., Nam, B., Hong, H.: People detection method using GPUs for a mobile robot with an omnidirectional camera. Opt. Eng. 50(12), 127204 (2011)CrossRefGoogle Scholar
  15. 15.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Proceedings of the Workshop on Statistical Learning in Computer Vision (2004)Google Scholar
  16. 16.
    Lourenco, M., Barreto, J.P., Vasconcelos, F.: sRD-SIFT: keypoint detection and matching in images with radial distortion. IEEE Trans. Robot. 28(3), 752–760 (2012)CrossRefGoogle Scholar
  17. 17.
    Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vision (IJCV) 60, 91–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Maji, S., Berg, A.C., Malik, J.: Classification using Intersection Kernel Support Vector Machines is Efficient. Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  19. 19.
    Mei, C., Rives, P.: Single Viewpoint Omnidirectional Camera Calibration from Planar Grids. In: Proceedings of International Conference on Pattern Recognition (ICPR) (2007)Google Scholar
  20. 20.
    Puig, L., Guerrero, J.J.: Scale Space for Central Catadioptric Systems: Towards a Generic Camera Feature Extractor. In: International Conference on Computer Vision (ICCV) (2011)Google Scholar
  21. 21.
    Puig, L., Bastanlar, Y., Sturm, P., Guerrero, J., Barreto, J.: Calibration of central catadioptric cameras using a DLT-like approach. Int. J. Comput. Vision (IJCV) 93(1), 101–114 (2011)CrossRefGoogle Scholar
  22. 22.
    Puig, L., Guerrero, J.J., Daniilidis, K.: Scale space for camera invariant features. IEEE Trans. PAMI 36(9), 1832–1846 (2014)Google Scholar
  23. 23.
    Tang, Y., Li, Y., Bai, T., Zhou, X.: Human Tracking in Thermal Catadioptric Omnidirectional Vision. In: International Conference on Information and Automation (ICIA) (2011)Google Scholar
  24. 24.
    Walk, S., Majer, N., Schindler, K., Schiele, B.: New Features and Insights for Pedestrian Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  25. 25.
    Wang, M.L., Lin, H.Y.: Object Recognition from Omnidirectional Visual Sensing for Mobile Robot Applications. In: IEEE International Conference on Systems, Man and Cybernetics (2009)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Computer Engineering DepartmentIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations