Lin, G.C., Wang, W.J., Kang, C.C., Wang, C.M.: Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn. Reson. Imaging 30(2), 230–246 (2012)
Article
Google Scholar
Yousefi, S., Azmi, R., Zahedi, M.: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms. Med. Image Anal. 16(4), 840–848 (2012)
Article
Google Scholar
Ghasemi, J., Ghaderi, R., Karami Mollaei, M., Hojjatoleslami, S.: A novel fuzzy Dempster–Shafer inference system for brain MRI segmentation. Inf. Sci. 223, 205–220 (2013)
Article
Google Scholar
Szilágyi, L., Szilágyi, S.M., Benyó, B.: Efficient inhomogeneity compensation using fuzzy C-means clustering models. Comput. Methods Prog. Biomed. 108(1), 80–89 (2012)
Article
Google Scholar
Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25(9), 1233–1245 (2006)
Article
Google Scholar
Tohka, J., Krestyannikov, E., Dinov, I., Shattuck, D., Ruotsalainen, U., Toga, A.: Genetic algorithms for finite mixture model based tissue classification in brain MRI. In: Proceedings of the European Medical and Biological Engineering Conference (IFMBE), pp. 4077–4082 (2005)
Tohka, J., Krestyannikov, E., Dinov, I.D., Graham, A., Shattuck, D.W., Ruotsalainen, U., Toga, A.W.: Genetic algorithms for finite mixture model based voxel classification in neuroimaging. IEEE Trans. Med. Imaging 26(5), 696–711 (2007)
Article
Google Scholar
Dey, V., Zhang, Y., Zhong, M.: A review on image segmentation techniques with remote sensing perspective. In: Proceedings of the International Society for Photogrammetry and Remote Sensing Symposium (ISPRS10), Vienna, pp. 5–7 (2010)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)
Article
Google Scholar
Balafar, M.: Gaussian mixture model based segmentation methods for brain MRI images. Artif. Intell. Rev. 41(3), 1–11 (2012)
Google Scholar
Dubes, R., Jain, A., Nadabar, S., Chen, C.: MRF model-based algorithms for image segmentation. In: Proceedings of the 10th International Conference Pattern Recognition, pp. 808–814 (1990)
Rajapakse, J.C., Giedd, J.N., Rapoport, J.L.: Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging 16(2), 176–186 (1997)
Article
Google Scholar
Marroquín, J.L., Vemuri, B.C., Botello, S., Calderon, E., Fernandez-Bouzas, A.: An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans. Med. Imaging 21(8), 934–945 (2002)
Article
Google Scholar
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
Article
Google Scholar
Pham, D., Prince, J.L., Xu, C., Dagher, A.P.: An automated technique for statistical characterization of brain tissues in magnetic resonance imaging. Int. J. Pattern Recognit. Artif. Intell. 11(08), 1189–1211 (1997)
Article
Google Scholar
Caldairou, B., Passat, N., Habas, P.A., Studholme, C., Rousseau, F.: A non-local fuzzy segmentation method: application to brain MRI. Pattern Recognit. 44(9), 1916–1927 (2011)
Article
Google Scholar
Rivest-Hénault, D., Cheriet, M.: Unsupervised MRI segmentation of brain tissues using a local linear model and level set. Magn. Reson. Imaging 29(2), 243–259 (2011)
Article
Google Scholar
Wu, T., Bae, M.H., Zhang, M., Pan, R., Badea, A.: A prior feature SVM-MRF based method for mouse brain segmentation. NeuroImage 59(3), 2298–2306 (2012)
Article
Google Scholar
Riklin-Raviv, T., Van Leemput, K., Menze, B.H., Wells III, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14(5), 654–665 (2010)
Article
Google Scholar
Wang, Z., Ziou, D., Armenakis, C., Li, D., Li, Q.: A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 43(6), 1391–1402 (2005)
Article
Google Scholar
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)
Article
Google Scholar
Besag, J.: Statistical analysis of non-lattice data. Statistician 24(3), 179–195 (1975)
MathSciNet
Article
Google Scholar
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)
MATH
Article
Google Scholar
Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)
Article
Google Scholar
Ferreira da Silva, A.R.: A Dirichlet process mixture model for brain MRI tissue classification. Med. Image Anal. 11(2), 169–182 (2007)
Article
Google Scholar
The homepage for the LONI (“Laboratory of Neuro Imaging”) software package, http://www.loni.usc.edu/Software/, as visited on 2014