Abstract
Correlation tracker is computation intensive (if the search space or the template is large), has template drift problem, and may fail in case of fast maneuvering target, rapid changes in its appearance, occlusion suffered by it and clutter in the scene. Kalman filter can predict the target coordinates in the next frame, if the measurement vector is supplied to it by a correlation tracker. Thus, a relatively small search space can be determined where the probability of finding the target in the next frame is high. This way, the tracker can become fast and reject the clutter, which is outside the search space in the scene. However, if the tracker provides wrong measurement vector due to the clutter or the occlusion inside the search region, the efficacy of the filter is significantly deteriorated. Mean-shift tracker is fast and has shown good tracking results in the literature, but it may fail when the histograms of the target and the candidate region in the scene are similar (even when their appearance is different). In order to make the overall visual tracking framework robust to the mentioned problems, we propose to combine the three approaches heuristically, so that they may support each other for better tracking results. Furthermore, we present novel method for (1) appearance model updating which adapts the template according to rate of appearance change of target, (2) adaptive threshold for similarity measure which uses the variable threshold for each forthcoming image frame based on current frame peak similarity value, and (3) adaptive kernel size for fast mean-shift algorithm based on varying size of the target. Comparison with nine state-of-the-art tracking algorithms on eleven publically available standard dataset shows that the proposed algorithm outperforms the other algorithms in most of the cases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 1–45 (2006)
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. 34, 334–352 (2004)
Kettnaker, V., Zabih, R.: Bayesian multi-camera surveillance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 23–25 June 1999, pp. 1–18 (1999)
Collins, R.T., Lipton, A.J., Fujiyoshi, H., Kanade, T.: Algorithms for cooperative multisensor surveillance. Proc. IEEE 89(10), 1456–1477 (2001)
Greiffenhagen, M., Comaniciu, D., Niemann, H., Ramesh, V.: Design, analysis, and engineering of video monitoring systems: an approach and a case study. Proc. IEEE 89(10), 1498–1517 (2001)
Kumar, R., Sawhney, H., Samarasekera, S., Hsu, S., Tao, H., Guo, Y., Hanna, K., Pope, A., Wildes, R., Hirvonen, D., Hansen, M., Burt, P.: Aerial video surveillance and exploitation. Proc. IEEE 89(10), 1518–1539 (2001)
Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38(2), 99–127 (2000)
Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)
Fablet, R., Black, M.J.: Automatic detection and tracking of human motion with a view-based representation. In: European Conference on Computer Vision (ECCV’02) 2002, pp. 476–491 (2002)
Agarwal, A., Triggs, B.: Learning to track 3D human motion from silhouettes. In: International Conference on Machine Learning (ICML’04), Banff, Canada 2004, pp. 9–16 (2004)
Rand, D., Kizony, R., Weiss, P.T.L.: The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J. Neurol. Phys. Ther. 32(4), 155–163 (2008)
Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., von Seelen, W.: Computer vision for driver assistance systems. In: International Society for Optics and Photonics: Aerospace/Defense Sensing and Controls 1998, pp. 136–147 (1998)
Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1064–1072 (2004)
Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transp. Res. Part C: Emerg. Technol. 6(4), 271–288 (1998)
Bradski, G.R.: Real time face and object tracking as a component of a perceptual user interface. In: Fourth IEEE Workshop on Applications of Computer Vision (WACV’98). 1998, pp. 214–219 (1998)
Papanikolopoulos, N.P., Khosla, P.K.: Adaptive robotic visual tracking: theory and experiments. IEEE Trans. Autom. Control 38(3), 429–445 (1993)
Amini, A., Owen, R., Anandan, P., Duncan, J.: Non-rigid motion models for tracking the left-ventricular wall. In: Information Processing in Medical Imaging 1991, pp. 343–357 (1991)
Vasconcelos, M.J.M., Ventura, S.M.R., Freitas, D.R.S., Tavares, J.M.R.S.: Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 224(10), 1153–1163 (2010)
Vasconcelos, M.J., Rua Ventura, S.M., Freitas, D.R.S., Tavares, J.M.R.S.: Towards the automatic study of the vocal tract from magnetic resonance images. J. Voice 25(6), 732–742 (2010)
Cafforio, C., Rocca, F.: Tracking moving objects in television images. Signal Process. 1(2), 133–140 (1979)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: 7th International Joint Conference on Artificial Intelligence 1981 (1981)
Fitts, J.M.: Precision correlation tracking via optimal weighting functions. In: 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes 1979, pp. 280–283 (1979)
Asgarizadeh, M., Pourghassem, H.: A robust object tracking synthetic structure using regional mutual information and edge correlation-based tracking algorithm in aerial surveillance application. Signal Image Video Process. 1–15 (2013)
Wang, Y., Zhao, Q.: Robust object tracking via online principal component-canonical correlation analysis (P3CA). Signal Image Video Process. 1–16 (2013)
Khan, M.I., Ahmed, J., Ali, A., Masood, A.: Robust edge-enhanced fragment based normalized correlation tracking in cluttered and occluded imagery. Signal Process. Image Process. Pattern Recogn. 12, 169–176 (2009)
Ahmed, J., Ali, A., Khan, A.: Stabilized active camera tracking system. J. Real-Time Image Process. 1–20 (2012)
Ahmed, J.: Adaptive Edge-Enhanced Correlation Based Robust And Real-Time Visual Tracking Framework and Its Deployment in Machine Vision Systems. Research, National University of Science and Technology (NUST), Karachi (2008)
Ali, A., Kauser, H., Khan, M.I.: Automatic Visual Tracking and Firing System for Anti-Aircraft Machine Gun. In: 6th International Bhurban Conference of Applied Science and Technology, Islamabad, Pakistan, 2009, pp. 253–257 (2009)
Ahmed, J., Jafri, M.N., Shah, M., Akbar, M.: Real-time edge-enhanced dynamic correlation and predictive open-loop car following control for robust tracking. Mach. Vis. Appl. J. 19(1), 1–25 (2008)
Wong, S.: Advanced correlation tracking of objects in cluttered imagery. In: Defense and Security:International Society for Optics and Photonics 2005, pp. 158–169 (2005)
Ali, A., Mirza, S.M.: Object tracking using correlation, Kalman filter and fast means shift algorithms. In: International Conference on Emerging Technologies, 2006. ICET’06, Islamabad, pp. 174–178 (2006)
Wilson, J.N., Ritter, G.X.: Handbook of Computer Vision-Algorithms in Image Algebra. CRC Press, Boca Raton (2001)
Kuglin, C., Hines, D.: The phase correlation image alignment method. In: International Conference on Cybernetics and Society 1975, pp. 163–165 (1975)
Chen, Q., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 16(12), 1156–1168 (1994)
Manduchi, R., Mian, G.A.: Accuracy analysis for correlation-based image registration algorithms. In: IEEE International Symposium on Circuits and Systems (ISCAS’93) 1993, pp. 834–837 (1993)
Stone, H.S., Tao, B., McGuire, M.: Analysis of image registration noise due to rotationally dependent aliasing. J. Vis. Commun. Image Represent. 14(2), 114–135 (2003)
Stone, H.S.: Fourier-based image registration techniques. NEC Research (2002)
Ahmed, J., Jafri, M.N.: Improved phase correlation matching. In: ICISP-08: International Conference on Image and Signal Processing, France 2008, pp. 128–135 (2008)
Jingying, J., Xiaodong, H., Kexin, X., Qilian, Y.: Phase correlation-based matching method with sub-pixel accuracy for translated and rotated images. In: IEEE International Conference on Signal Processing (ICSP’02) 2002, pp. 752–755 (2002)
Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)
Keller, Y., Averbuch, A., Miller, O.: Robust Phase Correlation. In: 17th International Conference on Pattern Recognition (ICPR’04) 2004, pp. 740–743 (2004)
Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Boston (1999)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)
Lewis, J.P.: Fast Normalized Cross-Correlation. In: Vision Interface 1995, pp. 120–123 (1995)
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Pearson Education Pte. Ltd., Delhi (2004)
Nixon, M., Aguado, A.: Feature Extraction and Image Processing. Newnes, Oxford (2002)
Beleznai, C., Frühstück, B., Bischop, H.: Human detection in groups using a fast mean shift procedure. In: International Conference on Image Processing (ICIP), October 2004, pp. 349–352 (2004)
Beleznai, C., Frühstück, B., Bischop, H.: Detecting humans in groups using a fast mean shift procedure. In: Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition (AAPR), June 2004, pp. 71–78 (2004)
Beleznai, C., Frühstück, B., Bischop, H.: Tracking multiple humans using fast mean shift mode seeking. In: IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, January 2005, pp. 25–32 (2005)
Beleznai, C., Frühstück, B., Bischop, H.: Human tracking by mode seeking. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA), September 2005, pp. 1–6 (2005)
Beleznai, C., Frühstück, B., Bischop, H.: Human tracking by fast mean shift mode seeking. Trans. J. Multimed. 1(1), 1–8 (2006)
Wang, X., Liu, L., Tang, Z.: Infrared human tracking with improved mean shift algorithm based on multi-cue fusion. Trans. J. Appl. Otics 48(21), 4201–4212 (2009)
Sutor, S., Röhr, R., Pujolle, G., Reda, R.: Efficient mean shift clustering using exponential integral kernels. Trans. Int. J. Electric. Comput. Eng. 4(4), 206–210 (2009)
Shan, C., Tan, T., Wei, Y.: Real-time hand tracking using a mean shift embedded particle filter. Trans. Pattern Recogn. 40, 1958–1970 (2007)
Yilmaz, A., Shafique, K., Lobo, N., Li, X., Olson, T., Shah, M.: Target tracking in FLIR imagery using mean shift and global motion compensation. In: IEEE Workshop on Computer Vision Beyond Visible Spectrum, Kauai, Hawaii 2001, pp. 54–58 (2001)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2000, pp. 142–149. Hilton Head, SC (2000)
Comaniciu, D., Ramesh, V.: Mean shift and optimal prediction for efficient object tracking. In: IEEE International Conference on Image Processing (ICIP) 2000, pp. 70–73 (2000)
Li, X., Zhang, T., Shen, X., Sun, J.: Object Tracking using an Adaptive Kalman Filter combined with Mean Shift. Opt. Eng. 49(2), 31–33 (2010)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral Histogram. In: IEEE Conference on Computer Vision and Pattern Recognition (ICPR) 2006, pp. 798–805 (2006)
Brunson, R.L., Boesen, D.L., Crockett, G.A., Riker, J.F.: Precision trackpoint control via correlation track referenced to simulated imagery. In: International Society for Optics and Photonics: Aerospace Sensing 1992, pp. 325–336 (1992)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)
Collins, R.T.: Mean-shift blob tracking through scale space. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003, pp. 234–240 (2003)
Ahmed, J., Shah, M., Miller, A., Harper, D., Jafri, M.N.: A Vision-based System for a UGV to Handle a Road Intersection. In: Proceedings of the National Conference on Artificial Intelligence 2007. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999
Ahmed, J., Jafri, M.N.: Best-match rectangle adjustment algorithm for persistent and precise correlation tracking. In: IEEE International Conference on Machine Vision (ICMV), Islamabad, Pakistan, 28–29 December 2007 (2007)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: Parallel robust online simple tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, pp. 723–730 (2010)
Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012, pp. 1940–1947 (2012)
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012, pp. 1822–1829 (2012)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, pp. 1269–1276 (2010)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011, pp. 1313–1320 (2011)
http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php
http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.html
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
Mei, X., Ling, H.: Robust visual tracking using \(\ell \) 1 minimization. In: IEEE 12th International Conference on Computer Vision 2009, pp. 1436–1443 (2009)
Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: Bootstrapping binary classifiers by structural constraints. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2010, pp. 49–56 (2010)
Acknowledgments
This research work is supported by PIEAS-administered HEC Endowment Fund for Higher education and R&D for IT and Telecom Sector Fund.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ali, A., Jalil, A., Ahmed, J. et al. Correlation, Kalman filter and adaptive fast mean shift based heuristic approach for robust visual tracking. SIViP 9, 1567–1585 (2015). https://doi.org/10.1007/s11760-014-0612-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-014-0612-0