Localization algorithms for multilateration (MLAT) systems in airport surface surveillance

Abstract

We present a general scheme for analyzing the performance of a generic localization algorithm for multilateration (MLAT) systems (or for other distributed sensor, passive localization technology). MLAT systems are used for airport surface surveillance and are based on time difference of arrival measurements of Mode S signals (replies and 1,090 MHz extended squitter, or 1090ES). In the paper, we propose to consider a localization algorithm as composed of two components: a data model and a numerical method, both being properly defined and described. In this way, the performance of the localization algorithm can be related to the proper combination of statistical and numerical performances. We present and review a set of data models and numerical methods that can describe most localization algorithms. We also select a set of existing localization algorithms that can be considered as the most relevant, and we describe them under the proposed classification. We show that the performance of any localization algorithm has two components, i.e., a statistical one and a numerical one. The statistical performance is related to providing unbiased and minimum variance solutions, while the numerical one is related to ensuring the convergence of the solution. Furthermore, we show that a robust localization (i.e., statistically and numerically efficient) strategy, for airport surface surveillance, has to be composed of two specific kind of algorithms. Finally, an accuracy analysis, by using real data, is performed for the analyzed algorithms; some general guidelines are drawn and conclusions are provided.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    EUROCAE-WG-41: ED-117, MOPS for Mode S multilateration systems for use in advanced surface movement guidance and control systems (A-SMGCS). In: The European Organisation for Civil Aviation Equipment (EUROCAE) (November 2003)

  2. 2.

    EUROCAE-WG-70: ED-142, technical specification for wide area multilateration (WAM) systems. In: The European Organisation for Civil Aviation Equipment (EUROCAE) (September 2010)

  3. 3.

    Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’11), Capri, Italy (2011)

  4. 4.

    Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’08), Capri, Italy (2008)

  5. 5.

    Galati, G., Zellweger, A.: Proceedings Book of the ATM 2002 Advanced Workshop. Capri, Italy (2002)

  6. 6.

    Hahn, W.R., Tretter, S.A.: Optimum processing for delay-vector estimation in passive signal arrays. IEEE Trans. Inf. Theory IT–19(5), 608–614 (1973)

    Article  Google Scholar 

  7. 7.

    Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. AES–20, 183–198 (1984)

    Article  Google Scholar 

  8. 8.

    Levanon, N.: Lowest GDOP in 2-D scenarios. IEE Proc. Radar Sonar Navig. 147(3), 149–155 (2000)

    Article  Google Scholar 

  9. 9.

    Galati, G., Leonardi, M., Mantilla-Gaviria, I.A., Tosti, M.: Lower bounds of accuracy for enhanced mode-s distributed sensor networks. IET Radar Sonar Navig. 6(3), 190–201 (2012). doi:10.1049/iet-rsn.2011.0197

    Article  Google Scholar 

  10. 10.

    Smith, J.O., Abel, J.S.: Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(12), 1661–1669 (1987)

    Article  Google Scholar 

  11. 11.

    Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-Tejedor, J.V., Reyes, E.D.L.: Efficient location strategy for airport surveillance using Mode-S multilateration systems. Int. J. Microw. Wireless Technol. 4(2), 209–216 (2012). doi:10.1017/S1759078712000104

    Article  Google Scholar 

  12. 12.

    Romero, L., Mason, J.: Evaluation of direct and iterative methods for overdetermined systems of TOA geolocation equations. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1213–1229 (2011)

    Article  Google Scholar 

  13. 13.

    Yang, K., An, J., Bu, X., Sun, G.: Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol. 59(3), 1558–1562 (2010)

    Article  Google Scholar 

  14. 14.

    Weng, Y., Xiao, W., Xie, L.: Total least squares method for robust source localization in sensor networks using TDOA measurements. Int. J. Distrib. Sens. Netw. 2011 (Article ID 172902) (2011). doi:10.1155/2011/172902

  15. 15.

    Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-T, J.V., Reyes, E.D.L.: Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance. In: Tyrrhenian International Workshop on Digital Communications—Enhanced Surveillance of Aircraft and Vehicles (ESAV’11), Capri, Italy (September 12–14, 2011)

  16. 16.

    Mantilla-Gaviria, I.A., Leonardi, M., Balbastre-Tejedor, J.V., Reyes, Edl: On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Math. Comput. Model. 57(7–8), 1999–2008 (2013). doi:10.1016/j.mcm.2012.03.004

    Article  Google Scholar 

  17. 17.

    El-Rabbany, A.: Introduction to GPS: The Global Positioning System, 2nd edn. Artech House, Boston, USA (2006)

    Google Scholar 

  18. 18.

    Trees, HLv: Detection, Estimation and Modulation Theory, Part I. Wiley, New York (2001)

    Google Scholar 

  19. 19.

    Foy, W.H.: Position-location solution by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. AES–12(2), 187–194 (1976)

    Google Scholar 

  20. 20.

    Smith, J.O., Abel, J.S.: The spherical interpolation method of source localization. IEEE J. Ocean. Eng. OE–12(1), 246–252 (1987)

    Article  Google Scholar 

  21. 21.

    Friedlander, B.: A passive localization algorithm and its accuracy analysis. IEEE J. Ocean. Eng. OE–12(1), 234–245 (1987). doi:10.1109/JOE.1987.1145216

    Article  Google Scholar 

  22. 22.

    Schau, H.C., Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(8), 1223–1225 (1987)

    Article  Google Scholar 

  23. 23.

    Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  MathSciNet  Google Scholar 

  24. 24.

    Schmidt, R.O.: A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. AES–8(6), 821–835 (1972)

    Article  Google Scholar 

  25. 25.

    Geyer, M., Daskalakis, A.: Solving passive multilateration equations using Bancroft’s algorithm. In: Digital Avionics Systems Conference, pp. F41/41–F41/48, Bellevue, WA, USA (1998)

  26. 26.

    Wikipedia: http://en.wikipedia.org/wiki/Multilateration

  27. 27.

    Bancroft, S.: An algebraic solution of the GPS equations. IEEE Trans. Aerosp. Electron. Syst. AES–21(7), 56–59 (1985)

    Article  Google Scholar 

  28. 28.

    Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  29. 29.

    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)

    Google Scholar 

Download references

Acknowledgments

Mr. Ivan A. Mantilla-Gaviria has been supported by a FPU scholarship (AP2008-03300) from the Spanish Ministry of Education. Moreover, the authors are grateful to ERA A.S. who supplied the recording of TDOA measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaspare Galati.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mantilla-Gaviria, I.A., Leonardi, M., Galati, G. et al. Localization algorithms for multilateration (MLAT) systems in airport surface surveillance. SIViP 9, 1549–1558 (2015). https://doi.org/10.1007/s11760-013-0608-1

Download citation

Keywords

  • Localization algorithms
  • Multilateration
  • Time difference of arrival
  • Airport surface surveillance
  • Air traffic control