Skip to main content
Log in

Combined HO-CPF and HO-WD PPS estimator

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript


Recently, the high-order cubic phase function (HO-CPF) and high-order Wigner distribution (HO-WD) have been proposed for parameter estimation of polynomial-phase signals (PPSs). To estimate PPS parameters, both the HO-CPF and HO-WD are evaluated at two points. One point is usually the center of the considered time interval, whereas the other one is shifted from the center. Shifting shortens the signal sequence and reduces the performance of the considered technique. In this paper, we propose an estimation procedure that combines the HO-CPF and HO-WD. The procedure evaluates both functions at the origin only, implying no signal shortening. Simulation results and statistical study have shown a significant performance improvement over the HO-CPF- and the HO-WD- based estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  1. In this paper, higher-order PPSs are PPSs whose phase order exceeds three.


  1. Boashash, B.: Time Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier, Boston (2003)

    Google Scholar 

  2. Djurović, I., Simeunović, M., Djukanović, S., Wang, P.: A hybrid CPF-HAF estimation of polynomial-phase signals: detailed statistical analysis. IEEE Trans. Signal Process. 60(10), 5010–5023 (2012)

    Article  MathSciNet  Google Scholar 

  3. Barbarossa, S., Petrone, V.: Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans. Signal Process. 45(2), 316–327 (1997)

    Article  Google Scholar 

  4. Djurović, I., Simeunović, M., Lutovac, B.: Are genetic algorithms useful for the parameter estimation of FM signals? Digit. Signal Process. 22(6), 1137–1144 (2012)

    Google Scholar 

  5. Ghogho, M., Nandi, A.K., Swami, A.: Cramèr–Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals. IEEE Trans. Signal Process. 47(11), 2905–2916 (1999)

    Google Scholar 

  6. Barbarossa, S., Scaglione, A., Giannakis, G.B.: Product high-order ambiguity function for multicomponent polynomial-phase signal modeling. IEEE Trans. Signal Process. 46(3), 691–708 (1998)

    Google Scholar 

  7. O’Shea, P.: A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Trans. Signal Process. 52(2), 385–393 (2004)

    Article  MathSciNet  Google Scholar 

  8. Peleg, S., Porat, B.: Linear FM signal parameter estimation from discrete-time observations. IEEE Trans. Aerosp. Electron. Syst. 27(4), 607–614 (1991)

    Article  Google Scholar 

  9. Porat, B., Friedlander, B.: Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Trans. Inf. Theory 42(3), 995–1001 (1996)

    Article  MATH  Google Scholar 

  10. Sharma, J.J., Gierull, C.H., Collins, M.J.: Compensating the effects of target acceleration in dual-channel SAR-GMTI radar. IEEE Proc. Sonar Navig. 153(1), 53–62 (2006)

    Google Scholar 

  11. Wang, P., Li, H., Djurović, I., Himed, B.: Instantaneous frequency rate estimation for high-order polynomial-phase signals. IEEE Signal Process. Lett. 16(9), 782–785 (2009)

    Article  Google Scholar 

  12. Wang, P., Li, H., Himed, B.: Instantaneous frequency estimation of polynomial phase signals using local polynomial Wigner-Ville distribution. In: International Conference on Electromagnetics in Advanced Applications, pp. 184–187 (2010)

  13. Ristić, B., Boashash, B.: Comments on the Cramèr–Rao lower bounds for signals with constant amplitude and polynomial phase. IEEE Trans. Signal Process. 46(6), 1708–1709 (1998)

    Article  Google Scholar 

  14. Gini, F., Giannakis, G.B.: Hybrid FM-polynomial phase signal modeling: parameter estimation and Cramèr–Rao bounds. IEEE Trans. Signal Process. 47(2), 363–377 (1999)

    Article  Google Scholar 

  15. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European conference on Artificial Life, pp. 134–142 (1991)

  16. Gubernatis, J.E.: Marshall Rosenbluth and the Metropolis algorithm. Phys. Plasmas 12, 057–303 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ingber, L.: Simulated annealing: practice versus theory. Math. Comput. Model. 18(11), 29–57 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references


This research was supported in part by the Ministry of Science of Montenegro.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marko Simeunović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djurović, I., Simeunović, M. Combined HO-CPF and HO-WD PPS estimator. SIViP 9, 1395–1400 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: