Skip to main content
Log in

Clutter map CFAR detector based on maximal resolution cell

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript


In order to improve the detection performance of clutter map constant false alarm rate (CFAR) detectors in multiple persisting targets situation, a clutter map CFAR (CM-CFAR) detector based on the maximal resolution cell (CM/MRC-CFAR) is proposed in this paper. In the CM/MRC-CFAR detector, at each scan, a comparison threshold is computed by multiplying the amplitude of the maximal resolution cell (MRC) in the map cell by a scaling factor. Then, the number of the left resolution cells, whose amplitudes are smaller than the comparison threshold, is counted and compared with a threshold integer. Based on the comparison result, proper resolution cells are selected to update the detection threshold. The detection probability of CM/MRC-CFAR in both homogeneous and multiple persisting targets situations is derived in a closed-form expression. The detection performance of CM/MRC-CFAR is evaluated in various environments and compared with other CM-CFAR detectors. CM/MRC-CFAR exhibits a very low CFAR loss in a homogeneous environment and achieves a robust detection performance in multiple persisting targets situations. Since no ranking is required except searching for the MRC, the computation load of CM/MRC-CFAR is low, and it is easy to implement the detector in radar systems in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Skolnik, M.I.: Introduction to Radar Systems, 3rd edn. McGraw-hill Book Company, NY (2001)

    Google Scholar 

  2. Khalighi, M.A., Bastani, M.H.: Adaptive CFAR processor for nonhomogeneous environments. IEEE Trans. Aerosp. Electron. Syst. 36(3), 889–897 (2000)

    Article  Google Scholar 

  3. Weiss, M.: Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Trans. Aerosp. Electron. Syst. 18(1), 102–114 (1982)

    Article  Google Scholar 

  4. Naldi, M.: False alarm control and self-masking avoidance by a biparametric clutter map in a mixed interference environment. IEE Proc.-Radar Sonar Navig. 146(4), 195–200 (1999)

    Article  Google Scholar 

  5. Meng, X.W.: Performance analysis of Nitzberg’s clutter map for Weibull distribution. Digit. Signal Process. 20(3), 916–922 (2010)

    Google Scholar 

  6. Hammoudi, Z., Soltani, F.: Distributed CA-CFAR and OS-CFAR detection using fuzzy spaces and fuzzy fusion rules. IEE Radar Sonar Navig. 151(3), 135–142 (2004)

    Article  Google Scholar 

  7. Maio, A.De, Farina, A., Foglia, G.: Design and experimental validation of knowledge-based constant false alarm rate detectors. IET Radar Sonar Navig. 1(4), 308–316 (2007)

    Article  Google Scholar 

  8. Gandhi, P.P., Kassam, S.A.: Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–444 (1988)

    Article  Google Scholar 

  9. Cao, T.V.: Constant false-alarm rate algorithm based on test cell information. IET Radar Sonar Navig. 2(3), 200–213 (2008)

    Article  Google Scholar 

  10. Finn, H.M.: A CFAR design for a window spanning two clutter fields. IEEE Trans. Aerosp. Electron. Syst. 22(2), 155–169 (1986)

    Article  Google Scholar 

  11. Meng, X.W.: Performance analysis of ordered-statistic greatest of-constant false alarm rate with binary integration for M-sweeps. IET Radar Sonar Navig. 4(1), 37–48 (2010)

  12. Shnidman, D.A.: Radar detection in clutter. IEEE Trans. Aerosp. Electron. Syst. 41(3), 1056–1067 (2005)

    Google Scholar 

  13. Smith, M.E., Varshney, P.K.: Intelligent CFAR processor based on data variability. IEEE Trans. Aerosp. Electron. Syst. 36(3), 837–847 (2000)

    Article  Google Scholar 

  14. Farrouki, A., Barkat, M.: Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments. IEE Radar Sonar Navig. 152(1), 43–51 (2005)

    Article  Google Scholar 

  15. Lops, M., Orsini, M.: Scan-by-scan averaging CFAR. IEE Proc. F Radar Signal Process. 136(6), 249–254 (1989)

    Article  Google Scholar 

  16. Shan, T., Tao, R., Wang, Y., et al.: Novel clutter map CFAR algorithm with amplitude limiter. J. Syst. Eng. Electron. 15(3), 262–265 (2004)

    Google Scholar 

  17. Hamadouche, M., Barakat, M., Khodja, M.: Analysis of the clutter map CFAR in Weibull clutter. Signal Process. 80(1), 117–123 (2000)

    Google Scholar 

  18. Nitzberg, R.: Clutter map CFAR analysis. IEEE Trans. Aerosp. Electron. Syst. 22(4), 419–421 (1986)

    Article  Google Scholar 

  19. Levanon, N.: Numerically efficient calculations of clutter map CFAR performance. IEEE Trans. Aerosp. Electron. Syst. 23(6), 813–814 (1987)

    Article  Google Scholar 

  20. Conte, E., Lops, M.: Clutter-map CFAR detection for range-spread targets in non-Gaussian clutter. Part I: system design. IEEE Trans. Aerosp. Electron. Syst. 33(2), 432–443 (1997)

    Article  Google Scholar 

  21. Shan, T., Tao, R., Wang, Y., et al.: Performance of order statistic clutter map CFAR. In: Proceeding of International Conference on Signal Processing, pp. 1572–1575 (2002)

  22. Lops, M.: Hybrid clutter-map/L-CFAR procedure for clutter rejection in nonhomogeneous environment. IEE Proc.-Radar Sonar Navig. 143(4), 239–245 (1996)

    Article  Google Scholar 

  23. Gurakan, B., Candan, C., Ciloglu, T.: CFAR processing with switching exponential smoothers for nonhomogeneous environments. Digit. Signal Process. 22, 407–416 (2012)

    Article  MathSciNet  Google Scholar 

  24. Conte, E., Lops, M., Tulino, A.M.: Hybrid procedure for CFAR in non-Gaussian clutter. IEE Proc.-Radar Sonar Navig. 144(6), 361–369 (1997)

    Article  Google Scholar 

  25. Conte, E., Bisceglie, M.D., Lops, M.: Clutter-map CFAR detection for range-spread targets in non-Gaussian clutter. Part II: performance assessment. IEEE Trans. Aerosp. Electron. Syst. 33(2), 444–455 (1997)

    Article  Google Scholar 

  26. Arnold, B.C., Balakrishnan, N., Nararaja, H.N.: A First Course in Order Statistics (2008, SIAM Edition)

Download references


This work was supported in part by the National Natural Science Foundation of China under grant 11273017.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ren-li Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Rl., Sheng, Wx., Ma, Xf. et al. Clutter map CFAR detector based on maximal resolution cell. SIViP 9, 1151–1162 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: