Skip to main content
Log in

A robust and fast combination algorithm for deblurring and denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient combined algorithm of split Bregman method, algebraic multigrid (AMG) method and Krylov acceleration method for deblurring and denoising. The split Bregman method is used to convert nonlinear TV model into three linear systems. But the linear system with blur operator is difficult to solve. We add an auxiliary linear stabilizing term to the linear system, then apply an AMG method and Krylov acceleration method to solve the new linear system. Various numerical experiments and comparisons demonstrate that the combined algorithm is efficient, fast, comparable to several existing algorithms, and robust over a wide range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of total variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bai, Z.J., Donatelli, M., Serra-Capizzano, S.: Fast preconditioners for total variation deblurring with anti-reflective boundary conditions. SIAM J. Matrix Anal. Appl. 32(3), 785–805 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (Mar. 2009)

    Google Scholar 

  4. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring. IEEE Trans. Image Proc. 18(11), 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bonettini, S., Ruggiero, V.: On the convergence of primal dual hybrid gradient algorithms for total variation image restoration. J. Math. Imaging Vis. 44(3), 236–253 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brandt, A., Mikulinsky, V.: On recombining iterants in multigrid algorithms and problems with small islands. SIAM J. Sci. Comput. 16(1), 20–28 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, J., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring, pp. 08–57. UCLA CAM, Report (2008)

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  9. Chang, Q., Huang, Z.: Efficient algebraic multigrid algorithms and their convergence. SIAM J. Sci. Comput. 24(2), 597–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chang, Q., Xu, J., Wang, W.: A method for total variation-based reconstruction of noisy and blurred image. In: Tai, X., Lie, K., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations, pp. 95–108. Springer, Berlin (2009)

    Google Scholar 

  11. Chang, Q., Wong, Y., Fu, H.: On the algebraic multigrid method. J. Comput. Phys 125(2), 279–292 (1999)

    Article  MathSciNet  Google Scholar 

  12. Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Image Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huang, Y., Ng, M.K., Wen, Y.: A fast total variation minimization method for image restoration. SIAM J. Multiscale Model Simul. 7(2), 774–795 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  16. Shi, Y.Y., Chang, Q.S.: Acceleration methods for image restoration problem with different boundary conditions. Appl. Numer. Math. 58(5), 602–614 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shi, Y.Y., Chang, Q.S.: Efficient algorithm for isotropic and anisotropic total variation deblurring and denoising. J. Appl. Math. vol. 2013, Article ID 797239 (2013). doi:10.1155/2013/797239

  18. Wen, Y., Ng, M.K., Ching, W.: Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30(5), 2647–2655 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for fruitful suggestions. This research was supported by NSFC (No. 10801049, 11271126), the Fund for Foster Excellent Talents of Beijing and Foundation of North China Electric Power University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Chang, Q. & Yang, X. A robust and fast combination algorithm for deblurring and denoising. SIViP 9, 865–874 (2015). https://doi.org/10.1007/s11760-013-0513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0513-7

Keywords

Navigation