Signal, Image and Video Processing

, Volume 9, Issue 2, pp 409–425 | Cite as

Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images

Original Paper


The manual analysis of brain tumor on magnetic resonance (MR) images is time-consuming and subjective. Thus, to avoid human errors in brain tumor diagnosis, this paper presents an automatic and accurate computer-aided diagnosis (CAD) system based on ensemble classifier for the characterization of brain tumors on MR images as benign or malignant. Brain tumor tissue was automatically extracted from MR images by the proposed segmentation technique. A tumor is represented by extracting its texture, shape, and boundary features. The most significant features are selected by using information gain-based feature ranking and independent component analysis techniques. Next, these features are used to train the ensemble classifier consisting of support vector machine, artificial neural network, and \(k\)-nearest neighbor classifiers to characterize the tumor. Experiments were carried out on a dataset consisting of T1-weighted post-contrast and T2-weighted MR images of 550 patients. The developed CAD system was tested using the leave-one-out method. The experimental results showed that the proposed segmentation technique achieves good agreement with the gold standard and the ensemble classifier is highly effective in the diagnosis of brain tumor with an accuracy of 99.09 % (sensitivity 100 % and specificity 98.21 %). Thus, the proposed system can assist radiologists in an accurate diagnosis of brain tumors.


Computer-aided diagnosis Brain tumor Magnetic resonance image Segmentation Ensemble classification 


  1. 1.
    World health organization cancer fact sheets. [online]:
  2. 2.
    Jaya, J., Thanushkodi, K.: Certain investigations on MRI segmentation for the implementation of CAD system. WSEAS Trans. Comput. 10(6), 189–198 (2011)Google Scholar
  3. 3.
    Westphal, M.: Classification of brain tumors and corresponding treatments. Practical Handbook of Neurosurgery: From Leading Neurosurgeons, pp. 503–528. Springer Vienna (2009)Google Scholar
  4. 4.
    Huo, J., Okada, K., Kim, H.J., Pope, W.B., Goldin, J.G., Alger, J.R., Brown, M.S.: CADrx for GBM brain tumors: predicting treatment response from changes in diffusion weighted MRI. Algorithms 2(4), 1350–1367 (2009)CrossRefGoogle Scholar
  5. 5.
    Hashemi, R.H., Bradley, W.G., Lisanti, C.J.: MRI: the basics, 3rd edn. Lippincott Williams and Wilkins, Philadelphia (2010)Google Scholar
  6. 6.
    Kopec, D., Kabir, M.H., Reinharth, D., Rothschild, O., Castiglione, J.A.: Human errors in medical practice: systematic classification and reduction with automated information systems. J. Med. Syst. 27(4), 297–313 (2003)CrossRefGoogle Scholar
  7. 7.
    Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: 3D Variational brain tumor segmentation using a high dimensional feature set, In: Proceedings of IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  8. 8.
    Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Proceedings of MICCAI, LNCS, Vol. 6362, Springer, pp. 151–159 (2010)Google Scholar
  9. 9.
    Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Model-based brain and tumor segmentation. In: Proceedings of International Conference on Pattern Recognition, IEEE pp. 528–531 (2002)Google Scholar
  10. 10.
    Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multi-level brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)CrossRefGoogle Scholar
  11. 11.
    Zhu, Y., Yan, H.: Computerized tumor boundary detection using a Hopfield neural network. IEEE Trans. Med. Imaging 16(1), 55–67 (1997)CrossRefGoogle Scholar
  12. 12.
    Bauer, S., Nolte, L.P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Proceedings of MICCAI, LNCS, Vol. 6893, Springer, pp. 354–361 (2011)Google Scholar
  13. 13.
    Verma, R., Zacharaki, E.I., Ou, Y., Cai, H., Chawla, S., Lee, S.K., Melhem, E.R., Wolf, R., Davatzikos, C.: Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Academ. Radiol. 15(8), 966–977 (2008)CrossRefGoogle Scholar
  14. 14.
    Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. In: Proceedings of MICCAI, LNCS, Vol. 5241, Springer, pp. 67–75 (2008)Google Scholar
  15. 15.
    Weglinski, T., Fabijanska, A.: Brain tumor segmentation from MRI data sets using region growing approach. In: Proceedings of International Conference on Perspective Technologies and Methods in MEMS Design, IEEE pp. 185–188 (2011)Google Scholar
  16. 16.
    Xie, K., Yang, J., Zhang, Z.G., Zhu, Y.M.: Semi-automated brain tumor and edema segmentation using MRI. Euro. J. Radiol. 56(1), 12–19 (2005)CrossRefGoogle Scholar
  17. 17.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  18. 18.
    Juang, L.H., Wu, M.N.: MRI brain lesion image detection based on color-converted K-means clustering segmentation. Measurement 43(7), 941–949 (2010)CrossRefGoogle Scholar
  19. 19.
    Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)CrossRefMATHGoogle Scholar
  20. 20.
    Kolen, J.F., Hutcheson, T.: Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Syst. 10(2), 263–267 (2002)CrossRefGoogle Scholar
  21. 21.
    Murugavalli, S., Rajamani, V.: A high speed parallel fuzzy c-mean algorithm for brain tumor segmentation. Bioinform. Med. Eng. 6(1), 29–34 (2006)Google Scholar
  22. 22.
    Fazel Zarandi, M.H., Zarinbal, M., Izadi, M.: Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. Appl. Soft Comput. 11(1), 285–294 (2011)CrossRefGoogle Scholar
  23. 23.
    Arizmendi, C., Vellido, A., Romero, E.: Binary classification of brain tumors using discrete wavelet transform and energy criteria. In: Proceedings of IEEE Second Latin American Symposium on Circuits and Systems, pp. 1–4 (2011)Google Scholar
  24. 24.
    Georgiadis, P., Cavouras, D., Kalatzis, I., Daskalakis, A., Kagadis, G.C., Sifaki, K., Malamas, M., Nikiforidis, G., Solomou, E.: Improving brain tumor characterization on MRI by probabilistic neural network and non-linear transformation of textural features. Comput. Methods Programs Biomed. 89(1), 24–32 (2008)Google Scholar
  25. 25.
    Zacharaki, E.I., Kanas, V.G., Davatzikos, C.: Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int. J. Comput. Assist. Radiol. Surg. 6(6), 821–828 (2011)Google Scholar
  26. 26.
    Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Res. Med. 62(6), 1609–1618 (2009)CrossRefGoogle Scholar
  27. 27.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  28. 28.
    Zöllner, F.G., Emblem, K.E., Schad, L.R.: SVM-based glioma grading: optimization by feature reduction analysis. J. Med. Phys. 22(3), 205–214 (2012)Google Scholar
  29. 29.
    Yang, W., Xia, H., Xia, B., Lui, L.M., Huang, X.: ICA-based feature extraction and automatic classification of AD-related MRI data. In: International Conference on Natural Computation, IEEE, pp. 1261–1265 (2010)Google Scholar
  30. 30.
    Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognit. Lett. 10(5), 335–347 (1989)CrossRefMATHGoogle Scholar
  31. 31.
    Ponti Jr, M.P.: Combining classifiers: from the creation of ensembles to the decision fusion. In: Proceedings of SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials, IEEE, pp. 1–10 (2011)Google Scholar
  32. 32.
    Doi, K.: Computer aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Gr. 31(4), 198–211 (2007)CrossRefGoogle Scholar
  33. 33.
    Taylor, S.A., Brittenden, J., Lenton, J., Lambie, H., Goldstone, A., Wylie, P.N., Tolan, D., Burling, D., Honeyfield, L., Bassett, P., Halligan, S.: Influence of computer-aided detection false-positives on reader performance and diagnostic confidence for CT colonography. Am. J. Roentgenol. 192(6), 1682–1689 (2009)CrossRefGoogle Scholar
  34. 34.
    Jenkinson, M., Smith, S.: A global optimization method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)CrossRefGoogle Scholar
  35. 35.
    Arakeri, M.P., Reddy, G.R.M.: Efficient fuzzy clustering based approach to brain tumor segmentation on MR images. In: Proceedings of CIIT 2011, CCIS, Vol. 250, Springer, pp. 790–795 (2011)Google Scholar
  36. 36.
    Roslan, R., Jamil, N., Mahmud, R.: Skull stripping magnetic resonance images brain images: region growing versus mathematical morphology. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 3, 150–158 (2011)Google Scholar
  37. 37.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Acharyya, M., De, R.K., Kundu, M.K.: Extraction of features using M-band wavelet packet frame and their neuro-fuzzy evaluation for multitexture segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1639–1644 (2003)CrossRefGoogle Scholar
  39. 39.
    Castro, A., Bóveda, C., Arcay, B.: A new method for the initialization of clustering algorithms based on histogram analysis. In: IASTED International Conference on Visualization, Imaging and Image Processing, ACM, pp. 176–181 (2007)Google Scholar
  40. 40.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: 14th ACM SIGGRAPH Annual Conference on Computer Graphics and Interactive, Techniques, pp. 163–169 (1987)Google Scholar
  41. 41.
    Mingqiang, Y., Kidiyo, K., Joseph, R.: A survey of shape feature extraction techniques. In: Yin, P.-Y. (ed.) Pattern Recognition Techniques, Technology and Applications, pp. 43–90. Intech (2008)Google Scholar
  42. 42.
    Kassimi, M.A., El beqqali, O.: 3D model retrieval based on semantic and shape indexes. Int. J. Comput. Sci. Issues 8(1), 172–181 (2011)Google Scholar
  43. 43.
    Akilandeswari, U., Nithya, R., Santhi, B.: Review on feature extraction methods in pattern classification. Euro. J. Sci. Res. 71(2), 265–272 (2012)Google Scholar
  44. 44.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  45. 45.
    Showalter, C., Clymer, B.D., Richmond, B., Powell, K.: Three-dimensional texture analysis of cancellous bone cores evaluated at clinical CT resolutions. Osteoporos. Int. 17(2), 259–266 (2005)CrossRefGoogle Scholar
  46. 46.
    Jafari-Khouzani, K., Soltanian-Zadeh, H., Elisevich, K., Patel, S.: Comparison of 2D and 3D wavelet features for TLE lateralization. Proc. SPIE 5369, 593–601 (2004)CrossRefGoogle Scholar
  47. 47.
    Wu, P., Xie, K., Zheng, Y., Wu, C.: Brain tumors classification based on 3D shapes. In: Proceedings of Advances in FCCS, AISC, Vol. 160, Springer, pp. 277–283 (2012)Google Scholar
  48. 48.
    Iftekharuddin, K.M., Jia, W., Marsh, R.: Fractal analysis of tumor in brain MR images. Mach. Vis. Appl. 13, 352–362 (2003)CrossRefGoogle Scholar
  49. 49.
    Wu, Y.T., Shyu, K.K., Jao, C.W., Wang, Z.Y., Soong, B.W., Wu, H.M., Wang, P.S.: Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). Neuroimage 49(1), 539–551 (2010)CrossRefGoogle Scholar
  50. 50.
    Shang, C., Barnes, D.: Combining support vector machines and information gain ranking for classification of mars mcmurdo panorama images. In: Proceedings of IEEE International Conference on Image Processing, pp. 1061–1064 (2010)Google Scholar
  51. 51.
    Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)Google Scholar
  52. 52.
    Prasad, M., Sowmya, A., Koch, I.: Efficient feature selection based on independent component analysis. Int. J. Comput. Intell. Appl. 7(4), 447–468 (2008)CrossRefMATHGoogle Scholar
  53. 53.
    Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Constructing support vector machine ensemble. Pattern Recognit. 36(12), 2757–2767 (2003)CrossRefMATHGoogle Scholar
  54. 54.
    Bian, S., Wang, W.: On diversity and accuracy of homogeneous and heterogeneous ensembles. Int. J. Hybrid Intell. Syst. 4(2), 103–128 (2007)MATHGoogle Scholar
  55. 55.
    Vapnik, V.: Universal learning technology: support vector machines. NEC J. Adv. Technol. 2(2), 137–144 (2005)Google Scholar
  56. 56.
    Haykin, S.O.: Neural networks and Learning Machines, 3rd edn, Prentice Hall (2008)Google Scholar
  57. 57.
    Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C.L.: IKNN: informative k-nearest neighbor pattern classification, LNCS, Vol. 4702, Springer, pp. 248–264 (2007)Google Scholar
  58. 58.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–238 (1998)CrossRefGoogle Scholar
  59. 59.
    Gerig, G., Jomier, M., Chakos, M.: Valmet: a new validation tool for assessing and improving 3d object segmentation. In: Proceedings of MICCAI, LNCS, Vol. 2208, Springer, pp. 516–523 (2001) Google Scholar
  60. 60.
    Herlidou-Meme, S., Constans, J.M., Carsin, B., Olivie, D., Eliat, P.A., Nadal Desbarats, L., Gondry, C., Le Rumeur, E., Idy-Peretti, I., de Certaines, J.D.: MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn. Res. Imaging 21(9), 989–993 (2003)Google Scholar
  61. 61.
    Das, A., Bhattacharya, M.: A study on prognosis of brain tumors using fuzzy logic and genetic algorithm based techniques. In: Proceeding of International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, IEEE, pp. 348–350 (2009)Google Scholar
  62. 62.
    Kharrat, A., Gasmi, K., Ben Messaoud, M., Benamrane, N., Abid, M.: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine. Leonardo J. Sci. 9(17), 71–82 (2010)Google Scholar
  63. 63.
    Arizmendi, C., Vellido, A., Romero, E.: Classification of human brain tumours from MRS data using discrete wavelet transform and bayesian neural networks. Expert Syst. Appl. 39(5), 5223–5232 (2012)CrossRefGoogle Scholar
  64. 64.
    Dimou, I., Tsougos, I., Tsolaki, E., Kousi, E., Kapsalaki, E., Theodorou, K., Kounelakis, M., Zervakis, M.: Brain lesion classification using 3T MRS spectra and paired SVM kernels. Biomed. Signal Process. Control 6(3), 314–320 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.National Institute of Technology Karnataka (NITK)MangaloreIndia

Personalised recommendations