Signal, Image and Video Processing

, Volume 7, Issue 3, pp 479–492 | Cite as

Simplification method for textured polygonal meshes based on structural appearance

  • Carlos GonzálezEmail author
  • Pascual Castelló
  • Miguel Chover
  • Mateu Sbert
  • Miquel Feixas
  • Jesús Gumbau
Original Paper


This paper proposes an image-based simplification method for textured triangle meshes that preserves the structural appearance of textured models. Models used in interactive applications are usually composed of textured polygonal meshes. Since textures play an important role in the final appearance of the simplified model, great distortions can be obtained if texture information is not considered in the simplification process. Our method is based on an information channel created between a sphere of viewpoints and the texture regions. This channel enables us to define both the Shannon entropy and the mutual information associated with each viewpoint, and their respective generalizations based on Harvda–Charvát–Tsallis entropy. Several experiments show that great visual distortions are avoided when textured models are simplified using our method.


Information theory geometry simplification textured models 



This work has been supported by the Spanish Ministry of Education and Science (TIN2010-21089-C03-01, TIN2010-21089-C03-03, TIN2009-14103-C03-01), Caja Castellón Bancaja Foundation (P1.1B2010-08, P1.1B2009-34), the European Union (Ref. 226487), the Regional Government of Valencia (Project PROMETEO/2010/028, BEST/2011), and the Regional Government of Catalunya (2009-SGR-643).


  1. 1.
    Luebke, D.P.: A developers survey of polygonal simplification algorithms. IEEE Comput Graph. Appl. 21(3), 24–35 (2001)CrossRefGoogle Scholar
  2. 2.
    Thakur, A., Banerjee, A.G., Gupta, S.K.: A survey of cad model simplification techniques for physics-based simulation applications. Comput. Aided Des. 41(2), 65–80 (2009)CrossRefGoogle Scholar
  3. 3.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 115–122. ACM, New York, USA (1998)Google Scholar
  4. 4.
    Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans. Graph. 19(3), 204–241 (2000)CrossRefGoogle Scholar
  5. 5.
    Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH 01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 409–416. ACM, New York, USA (2001)Google Scholar
  6. 6.
    Chen, C.C., Chuang, J.H.: Texture adaptation for progressive meshes. Comput. Graph. Forum 25(3), 343–350 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    García, I., Patow, G.: Igt: inverse geometric textures. ACM Trans. Graph. 27(5), 1–9 (2008)CrossRefGoogle Scholar
  8. 8.
    Cabral, M., Lefebvre, S., Dachsbacher, C., Drettakis, G.: Structure preserving reshape for textured architectural scenes. Comput. Graph. Forum 28(2), 469–480 (2009)CrossRefGoogle Scholar
  9. 9.
    Coll, N., Paradinas, T.: Accurate simplification of multi-chart textured models. Comput. Graph. Forum 29(6), 1842–1853 (2010)CrossRefGoogle Scholar
  10. 10.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (1948)CrossRefGoogle Scholar
  11. 11.
    Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Harvda, J., Charvát, F.: Quantification method of classification processes. Concept of structural alpha-entropy. Kybernetika 3, 30–35 (1967)MathSciNetGoogle Scholar
  13. 13.
    Kho, Y., Garland, M.: User-guided simplification. In: I3D 03: Proceedings of the: Symposium on Interactive 3D graphics, vol. 2003, pp. 123–126. ACM, New York, USA (2003)Google Scholar
  14. 14.
    González, C., Gumbau, J., Chover, M., Ramos, F., Quirós, R.: User-assisted simplification method for triangle meshes preserving boundaries. Comput. Aided Des. 41(12), 1095–1106 (2009)CrossRefGoogle Scholar
  15. 15.
    Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: VIS 98: Proceedings of the Conference on Visualization 98, pp. 263–269. In: IEEE Computer Society Press, Los Alamitos, USA (1998)Google Scholar
  16. 16.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM, New York, USA (1997)Google Scholar
  17. 17.
    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: VISUALIZATION 99: Proceedings of the 10th IEEE Visualization: Conference. IEEE Computer Society, Washington, USA, vol. 1999, pp. 59–66 (1999)Google Scholar
  18. 18.
    Luebke, D.P., Hallen, B.: Perceptually-driven simplification for interactive rendering. In: Proceedings of the 12th Eurographics Workshop on Rendering Techniques, pp. 223–234. Springer, London, UK (2001)Google Scholar
  19. 19.
    Williams, N., Luebke, D., Cohen, J.D., Kelley, M., Schubert, B.: Perceptually guided simplification of lit, textured meshes. In: I3D 03: Proceedings of the: Symposium on Interactive 3D Graphics, vol. 2003, pp. 113–121. ACM, New York, USA (2003)Google Scholar
  20. 20.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH 96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM, New York, USA (1996)Google Scholar
  21. 21.
    Zhang, E., Turk, G.: Visibility-guided simplification. In: VIS 02: Proceedings of the Conference on Visualization, pp. 267–274. IEEE Computer Society, Washington, USA (2002)Google Scholar
  22. 22.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)CrossRefGoogle Scholar
  23. 23.
    Garland, M., Zhou, Y.: Quadric-based simplification in any dimension. ACM Trans. Graph. 24(2), 209–239 (2005)CrossRefGoogle Scholar
  24. 24.
    Xu, A., Sun, S., Xu, K.: Texture information driven triangle mesh simplification. In: Proceedings of Computer Graphics and Imaging, Honolulu, Hawaii, pp. 43–48 (2005)Google Scholar
  25. 25.
    González, C., Castelló, P., Chover, M.: A texture-based metric extension for simplification methods. In: 2nd International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 69–76. Barcelona, Spain (2007) Google Scholar
  26. 26.
    González, C., Castelló, P., Chover, M., Sbert, M., Feixas, M.: Viewpoint entropy-driven simplification method for textured triangle meshes. In: 5th International Conference on Computer Graphics Theory and Applications (GRAPP 2010), Angers, France, pp. 30–37 (2010)Google Scholar
  27. 27.
    Castelló, P., Sbert, M., Chover, M., Feixas, M.: Viewpoint entropy-driven simplification. In: Proceedings of 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 2007, pp. 249–256Google Scholar
  28. 28.
    Castelló, P., Sbert, M., Chover, M., Feixas, M.: Viewpoint-driven simplification using mutual information. Comput. Graph. 32(4), 451–463 (2008)CrossRefGoogle Scholar
  29. 29.
    Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. (TAP) 6(1), 1–23 (2009)CrossRefGoogle Scholar
  30. 30.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. VMV 01: Proceedings of the Vision Modeling and Visualization Conference, Stuttgart, Germany, 2001, pp. 273–280Google Scholar
  31. 31.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
  32. 32.
    Rényi, A.: On measures of entropy and information. In: Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561. University of California Press (1961)Google Scholar
  33. 33.
    Viola, I., Feixas, M., Sbert, M., Groller, E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006)CrossRefGoogle Scholar
  34. 34.
    Taneja, I.: Bivariate measures of type a and their applications. Tamkang J. Math. 19(3), 63–74 (1988)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Tsallis, C.: Generalized entropy-based criterion for consistent testing. Phys. Rev. E 58(2), 1442–1445 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Carlos González
    • 1
    Email author
  • Pascual Castelló
    • 1
  • Miguel Chover
    • 1
  • Mateu Sbert
    • 2
  • Miquel Feixas
    • 2
  • Jesús Gumbau
    • 1
  1. 1.Institute of New Imaging Technologies, Department of Computer Languages and SystemsUniversity Jaume ICastellónSpain
  2. 2.Institut d’Informatica i AplicacionsUniversitat de GironaGironaSpain

Personalised recommendations