Signal, Image and Video Processing

, Volume 9, Issue 1, pp 221–228 | Cite as

A random-valued impulse noise removal algorithm with local deviation index and edge-preserving regularization

Original Paper

Abstract

In this paper, we present a two-phase random-valued impulse noise removal algorithm based on local deviation index (LDI) and edge-preserving regularization. In the first phase, we define an image statistic LDI. Then with image pixels’ LDI values, the outlier candidates are identified. In the second phase, the image is denoised by an edge-preserving regularization method. Extensive experimental results indicate that our method performances better than many existing filters do for its robust image restoration and accurate noise detection.

Keywords

Random-valued impulse noise Local deviation index (LDIEdge-preserving regularization 

Notes

Acknowledgments

This work was supported by the National Key Technologies R&D Program of China during the 12th five-year period (2012BAJ23B02).

References

  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  2. 2.
    Brownrigg, D.: The weighted median filter. Commun. Assoc. Comput. 807–818 (1984)Google Scholar
  3. 3.
    Ko, S.J., Lee, S.J.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 15(4), 984–993 (1991)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Akkoul, S., Lédée, R., Leconge, R., Harba, R.: A new adaptive switching median filter. In: IEEE Signal Process Lett. 17(6), 587–590 (2010)Google Scholar
  5. 5.
    Chen, T., Wu, H.R.: Adaptive impulse detection using center-weighted median filters. In: IEEE Signal Process. Lett. 8(1), 1–3 (2001)Google Scholar
  6. 6.
    Dong, Y., Xu, S.: A new directional weighted median filter for removal of random-valued impulse noise. In: IEEE Signal Process. Lett. 14(3), 193–196 (2007)Google Scholar
  7. 7.
    Senk, V., Trpovski, Z.: Advance impulse detection based on pixel-wised MAD. In: IEEE Signal Process. Lett. 11(7), 589–592 (2004)Google Scholar
  8. 8.
    Luo, W.: “A new efficient impulse detection algorithm for the removal of impulse noise”. IEICE Trans. Fundam. E88–A(10), 2579–2586 (2005)CrossRefGoogle Scholar
  9. 9.
    Lin, C., Tsai, J.H., Chiu, C.T.: Switching bilateral filter with a texture/noise detector for universal noise removal. In: IEEE Trans. Image Prog. 19(9), 2307–2320 (2010)Google Scholar
  10. 10.
    Awad, A.S.: Standard deviation for obtaining the optimal direction in removal of impulse noise. IEEE Signal Process. Lett. 18(7), 407–410 (2011)CrossRefGoogle Scholar
  11. 11.
    Ghanekar, U., Singh, A.K., Pandey, R.: A contrast enhancement-based filter for removal of random-valued impulse noise. In: IEEE Signal Process. Lett. 17(1), 47–50 (2010)Google Scholar
  12. 12.
    Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imag. Vis. 20, 99–120 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chan, R.H., Hu, C., Nikolova, M.: An iterative procedure for removing random-valued impulse noise. In: IEEE Signal Process. Lett. 11(2), 921–924 (2004)Google Scholar
  14. 14.
    Dong, Y., Chan, R.H., Xu, S.: A detection statistic for random-valued impulse noise. In: IEEE Trans. Image Process. 16(4), 1112–1120 (2007)Google Scholar
  15. 15.
    Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail preserving regularization. In: IEEE Trans. Image Prog. 14(10), 1479–1485 (2005)Google Scholar
  16. 16.
    Huang, Y., Ng, M.K., Wen, Y.: Fast image restoration methods for impulse and Gaussian noise removal. In: IEEE Signal Process. Lett. 16(6), 457–460 (2009)Google Scholar
  17. 17.
    Allard, W.K.: Total variation regularization for image denoising, II examples. SIAM J. Imaging Sci. 1(4), 400–417 (2008)Google Scholar
  18. 18.
    Wang, W., Lu, P.: An efficient switching median filter based on local outlier factor. In: IEEE Signal Process. Lett. 18(10), 551–554 (2011)Google Scholar
  19. 19.
    Xiong, B., Yin, Z.: A universal denoising framework with a new impulse detector and nonlocal means. In: IEEE Trans. Image Prog. 21(4), 1663–1675 (2012)Google Scholar
  20. 20.
    Breuig, M.M., et al.: LOF: Identifying density based local outliers. In: Proceedings of the ACM SIGMOD Conference, New York, pp. 427–438 (2000)Google Scholar
  21. 21.
    Bovik, A.: Handbook of Image and Video Processing. Academic, New York (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Instrument Science and Engineering Southeast UniversityNanjingChina
  2. 2.Suzhou Research InstituteSoutheast University SuzhouChina

Personalised recommendations