Signal, Image and Video Processing

, Volume 7, Issue 6, pp 1103–1112 | Cite as

Fast motion estimation for surveillance video compression

Original Paper

Abstract

In this article, novel approaches to perform efficient motion estimation specific to surveillance video compression are proposed. These includes (i) selective (ii) tracker-based and (iii) multi-frame-based motion estimation. In selective approach, motion vector search is performed for only those frames that contain some motion activity. In another approach, contrary to performing motion estimation on the encoder side, motion vectors are calculated using information of a surveillance video tracker. This approach is quicker but for some scenarios it degrades the visual perception of the video compared with selective approach. In an effort to speed up multi-frame motion estimation, we propose a fast multiple reference frames-based motion estimation technique for surveillance videos. Experimental evaluation shows that significant reduction in computational complexity can be achieved by applying the proposed strategies.

Keywords

Motion estimation Fast full search Multiple reference frames Successive elimination algorithm Surveillance video Fast motion estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vetro, A., Haga, T., Sumi, K., Sun, H.: Object-based coding for long-term archive of surveillance video. Technical Report, TR-2003-98, MERL (2003)Google Scholar
  2. 2.
    Yu, Y., Doermann, D.: Model of object-based coding for surveillance video. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 693–696 (2005)Google Scholar
  3. 3.
    Hakeem, A., Shafique, K., Shah, M.: An object-based video coding framework for video sequences obtained from static cameras. In: Proceedings of ACM International Conference on Multimedia, pp. 608–617 (2005)Google Scholar
  4. 4.
    Ziliani, F.: The importance of ‘Scalability’ in video surveillance architectures. In: IEE International Symposium on Imaging for Crime Detection and Prevention, June (2005)Google Scholar
  5. 5.
    May, A., The, J., Hobson, P., Ziliani, F., Reichel, J.: Scalable video requirements for surveillance applications. IEE Intelligent Distributed Surveillance System, pp. 17–20, Feb (2004)Google Scholar
  6. 6.
    Ramzan N., Zgaljic T., Izquierdo E.: An efficient optimisation scheme for scalable surveillance centric video communications. Signal Process. Image Commun. 24, 510–523 (2009)CrossRefGoogle Scholar
  7. 7.
    Li R., Zeng B., Liou M.L.: A new three-step search algorithm for block motion estimation. In: IEEE Trans. Circuit Syst. Video Technol. 4, 438–442 (1994)CrossRefGoogle Scholar
  8. 8.
    Po L.M., Ma W.C.: A novel four step search algorithm for fast block motion estimation. In: IEEE Trans. Circuit Syst. Video Technol. 6, 313–317 (1996)CrossRefGoogle Scholar
  9. 9.
    Zhu S., Ma K.K.: A new diamond search algorithm for fast block-matching motion estimation. In: IEEE Trans. Image Process. 9, 287–290 (2000)CrossRefGoogle Scholar
  10. 10.
    Lam C.W., Po L.M., Cheung C.H.: A novel kite-cross-diamond search algorithm for fast block matching motion estimation. In: IEEE ISCAS 3, 729–732 (2004)Google Scholar
  11. 11.
    Yi X., Ling N.: Rapid block-matching motion estimation using modified diamond search. In: IEEE ISCAS 6, 5489–5492 (2005)Google Scholar
  12. 12.
    Tourapis, H.-Y.C., Tourapis, A.M.: Fast motion estimation with the H.264 codec. In: International Conference on Multimedia and Expo (ICME’03), vol. 3, pp. 517–520, July (2003)Google Scholar
  13. 13.
    Kuo C.-M., Kuon Y.-S., Hsieh C.-H., Lee Y.-H.: A novel prediction-based directional asymmetric search algorithm for fast block-matching motion estimation. In: IEEE Trans. Circuit Syst. Video Technol. 19, 893–899 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee S.: Fast motion estimation based on adaptive search range adjustment and matching error prediction. In: IEEE Trans. Consumer Electron. 55(2), 805–811 (2009)CrossRefGoogle Scholar
  15. 15.
    Luo J., Ahmad I., Liang Y., Swaminathan V.: Motion estimation for content adaptive video compression. IEEE Trans. Circuit Syst. Video Technol. 18(7), 900–909 (2008)CrossRefGoogle Scholar
  16. 16.
    Stauffer C., Grimson W.E.L.: Learning patterns of activity using real time tracking. In: IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)CrossRefGoogle Scholar
  17. 17.
    Li W., Salari E.: Successive elimination algorithm for motion estimation. In: IEEE Trans. Image Process. 4, 105–107 (1995)CrossRefGoogle Scholar
  18. 18.
    Wang H.-S., Mersereau R.M.: Fast algorithm for the estimation of motion vectors. In: IEEE Trans. Image Process. 8, 435–438 (1999)CrossRefGoogle Scholar
  19. 19.
    Gao X.Q., Duanmu C.J., Zou C.R.: A multilevel successive elimination algorithm for block matching motion estimation. In: IEEE Trans. Image Process. 9, 501–504 (2000)CrossRefGoogle Scholar
  20. 20.
    ITU-T Rec. H.264/ISO/IEC 11496-10: Advance Video Coding. Final Committee Draft, Document JVT-E022, September (2002)Google Scholar
  21. 21.
    ITU-T Rec. H.264/ISO/IEC 11496-10: Advance Video Coding. Final Committee Draft, Document JVT-g050, March (2003)Google Scholar
  22. 22.
    Ates, H.F., Altunbasak, Y.: SAD resuse in hierarchical motion estimation for the H.264 encoder. In: Proceedings of IEEE Acoustics, Speech and Signal Processing (ICASSP), pp. 905–908 (2005)Google Scholar
  23. 23.
    Su Y., Sun M.-T.: Fast multiple reference frame motion estimation for H.264/AVC. In: IEEE Trans. Circuits Syst. Video Technol. 16, 447–452 (2006)CrossRefGoogle Scholar
  24. 24.
    Chen M.-J., Li G.-L., Chiang Y.-Y., Hsu C.-T.: Fast multiframe motion estimation algorithm by motion vector composition for the MPEG-4/AVC/H.264 standard. In: IEEE Trans. Multimed. 8, 478–487 (2006)CrossRefGoogle Scholar
  25. 25.
    Hsia, S.-C., Hung, Y.-C.: Fast multi-frame motion estimation for h264/avc system. J. Signal Image Video Process. (SIViP), (2009)Google Scholar
  26. 26.
    Mrak, M., Sprljan, N., Zgaljic, T., Ramzan, N., Wan, S., Izquierdo, E.: Performance evidence of software proposal for wavelet video coding exploration group. Technical Report ISO/IEC JTC1/SC29/WG11/MPEG2006/M13146 (2006)Google Scholar
  27. 27.
    Zgaljic, T., Ramzan, N., Akram, M., Izquierdo, E., Caballero, R., Finn, A., Wang, H., Xiong, Z.: Surveillance centric coding. In: 5th International Conference on Visual Information Engineering (VIE 2008), pp. 835–839, July (2008)Google Scholar
  28. 28.
    Akram, M., Ramzan, N., Izquierdo, E.: Event based video coding architecture. In: 5th International Conference on Visual Information Engineering (VIE 2008), pp. 807–812 July (2008)Google Scholar
  29. 29.
    Zgaljic T., Sprljan N., Izquierdo E.: Bit-stream allocation methods for scalable video coding supporting wireless communications. Signal Process. Image Commun. 22, 298–316 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK
  2. 2.University of Engineering and TechnologyLahorePakistan

Personalised recommendations