Skip to main content

Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods


In this paper, we propose to investigate the capabilities of two kernel methods for the detection and classification of premature ventricular contractions (PVC) arrhythmias in Electrocardiogram (ECG signals). These kernel methods are the support vector machine and Gaussian process (GP). We propose to study these two classifiers with various feature representations of ECG signals, such as morphology, discrete wavelet transform, higher-order statistics, and S transform. The experimental results obtained on 48 records (i.e., 109,887 beats) of the MIT-BIH Arrhythmia database showed that for all feature representation adopted in this work, the GP detector trained only with 600 beats from PVC and Non-PVC classes can provide an overall accuracy and a sensitivity above 90 % on 20 records (i.e., 49,774 beats) and 28 records (i.e., 60,113 beats) seen and unseen, respectively, during the training phase.

This is a preview of subscription content, access via your institution.


  1. Melgani F., Bazi Y.: Classification of electrocardiogram signals with support vector machines and swarm particle optimization. In: IEEE Trans. Inf. Technol. Biomed. 12(5), 667–677 (2008)

    Google Scholar 

  2. Ceylan R., Ozbay Y., Karlik B.: A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6726 (2009)

    Article  Google Scholar 

  3. Martis R.J., Chakraborty C.C., Ray A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognit. 42(11), 2979–2988 (2009)

    Article  MATH  Google Scholar 

  4. Ubeyli E.D.: Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digit. Signal Process. 19(2), 320–329 (2009)

    Article  Google Scholar 

  5. Khorrami H., Moavenian M.: A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Syst. Appl. 37(8), 5751–5757 (2010)

    Article  Google Scholar 

  6. Ozbay Y., Tezel G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit. Signal Process. 20(4), 1040–1049 (2010)

    Article  Google Scholar 

  7. Moavenian M., Khorrami H.: A qualitative comparison of Artificial neural networks and support vector machines in ECG arrhythmias classification. Expert Syst. Appl. 37(8), 3088–3093 (2010)

    Article  Google Scholar 

  8. Khazaee A., Ebrahimzadeh A.: Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control 5(4), 252–263 (2010)

    Article  Google Scholar 

  9. Korurek M., Dogan B.: ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Syst. Appl. 37(12), 7563–7569 (2010)

    Article  Google Scholar 

  10. Pasolli E., Melgani F.: Active Learning methods for electrocardiographic signal classification. In: IEEE Trans. Inf. Technol. Biomed. 14(6), 1405–1416 (2010)

    Google Scholar 

  11. Ozbay Y., Ceylan R., Karlik B.: Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier. Expert Syst. Appl. 38(1), 1004–1010 (2011)

    Article  Google Scholar 

  12. Lanata A., Valenza G., Mancuso C., Scilingo E.P.: Robust multiple cardiac arrhythmia detection through bispectrum analysis. Expert Syst. Appl. 38(6), 6798–6804 (2011)

    Article  Google Scholar 

  13. Vapnik V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Williams C.K.I., Barber D.: Bayesian classification with Gaussian processes. In: IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1342–1351 (1998)

    Google Scholar 

  15. Gibbs M., MacKay D.J.C.: Variational Gaussian process classifiers. In: IEEE Trans. Neural Netw. 11(6), 1458–1464 (2000)

    Google Scholar 

  16. Minka, T.P.: A family of algorithm for approximate Bayesian inference. Ph.D. thesis, Massachusetts Institute of Technology (2001)

  17. Kuss M., Rasmussen C.: Assessing approximate inference for binary Gaussian process classification. J. Mach. Learn. Res. 6, 1679–1704 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Rasmussen C., Williams C.K.I.: Gaussian Process for Machine dearning. The MIT Press, Cambridge, MA (2006)

    Google Scholar 

  19. Bazi Y., Melgani F.: Gaussian process approach to remote sensing image classification. In: IEEE Trans. Geosci. Remote Sens. 48(1), 186–197 (2010)

    Google Scholar 

  20. Kim H.C., Ghahramani Z.: Bayesian Gaussian process classification with the EM-EP algorithm. In: IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1948–1959 (2006)

    Google Scholar 

  21. Mark, R., Moody, G.: MIT-BIH Arrhythmia Database 1997 [Online]. Available at (1997)

  22. Mallat S.G.: Multifrequency channel decompositions of image and wavelet models. In: IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)

    Google Scholar 

  23. Nikias C., Petropulu A.: Higher Order Spectral Analysis. Prentice-Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  24. Stockwell R.G., Mansinha L., Lowe R.P.: Localization of the complex spectrum: the S-transform. In: IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Google Scholar 

  25. Wei J.J., Chang C.J., Shou N.K., Jan G.J.: ECG data compression using truncated singular value decomposition. In: IEEE Trans. Biomed. Eng. 5(4), 290–299 (2001)

    Google Scholar 

  26. Peng H., Long F., Ding C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. In: IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Google Scholar 

  27. Stone M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 36, 111–147 (1974)

    MATH  Google Scholar 

  28. Chang, C.-C., Lin, C.-J.: LIBSVM—A Library for Support Vector Machines [Online]. Available at

  29. Rasmussen, C.E., Williams, K.I.: Gaussian Process Software [Online]. Available at

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yakoub Bazi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alajlan, N., Bazi, Y., Melgani, F. et al. Detection of premature ventricular contraction arrhythmias in electrocardiogram signals with kernel methods. SIViP 8, 931–942 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Premature ventricular contraction (PVC)
  • Support vector machines (SVMs)
  • Gaussian process classifiers (GPCs)
  • Morphology
  • Wavelet transform
  • High-order statistics
  • S transform