Signal, Image and Video Processing

, Volume 6, Issue 3, pp 495–501 | Cite as

Fractional reset control

  • Duarte ValérioEmail author
  • José Sá da Costa
Original Paper


Reset control is a nonlinear control technique that consists in resetting to zero the value of the integrals in a controller, whenever their input becomes zero. Fractional reset control is the application of reset control to a fractional controller. This is done both to force the control action to oscillate around zero, preventing it from having a nonzero average, and to improve the phase margin of the open loop, while keeping the slope of the gain plot of the controller’s Bode diagram. This paper presents numerical values for the describing functions obtained with fractional reset control applied to controller s α , \({\alpha \in {\rm I}\kern -1.6pt{\rm R}}\). Three different ways of implementing fractional derivatives are employed: one based upon the Grünwald–Letnikoff definition, one based upon the Riemann–Liouville definition, and the Crone approximation. It is found that the describing function depends significantly on the way fractional derivatives are implemented.


Fractional control Reset control Fractional calculus Describing function Clegg integrator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clegg J.C.: A nonlinear integrator for servomechanisms. Trans. A.I.E.E. Part II 77, 41–42 (1958)Google Scholar
  2. 2.
    Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu V.: Fractional-order Systems and Controls. Springer, London (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Slotine J., Li W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  4. 4.
    Khalil H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  5. 5.
    Lanusse, P., Oustaloup, A.: Windup compensation system for fractional controller. In: IFAC Workshop on Fractional Differentiation and its Applications (2004)Google Scholar
  6. 6.
    Luo Y., Chen Y., Pi Y.: Fractional order ultra low-speed position servo: Improved performance via describing function analysis. ISA Trans. 50(1), 53–60 (2011)CrossRefGoogle Scholar
  7. 7.
    Podlubny I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  8. 8.
    Valério D., Sáda Costa J.: An introduction to single-input, single-output Fractional Control. IET Control Theory Appl. 5(8), 1033–1057 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Oustaloup A., Cois O., Lanusse P., Melchior P., Moreau X., Sabatier J., Thomas J.L.: A survey on the CRONE approach. In: Le Méhauté, A., Machado, J.A.T., Trigeassou, J.C., Sabatier, J. (eds.) Fractional Differentiation and its Applications, pp. 735–780. LAPS, Bordeaux (2005)Google Scholar
  10. 10.
    Oustaloup A., Levron F., Matthieu B., Nanot F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. In: IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Oustaloup A.: La commande CRONE : Commande Robuste d’Ordre Non Entier. Hermès, Paris (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.IDMEC, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal

Personalised recommendations