Advertisement

Signal, Image and Video Processing

, Volume 6, Issue 3, pp 463–478 | Cite as

Study of the effects of structural uncertainties on a fractional system of the first kind – application in vibration isolation with the CRONE suspension

  • Roy Abi Zeid DaouEmail author
  • Xavier Moreau
  • Clovis Francis
Original Paper

Abstract

In this paper, we deal with the effects of the uncertainties on a fractional system of the first kind, mainly on the frequency-domain and the time-domain responses. For the structural uncertainties, two main aspects are studied: the nonlinearities of the physical components used to realize the fractional system and the consideration of the previously neglected dynamics of the system. Both uncertainties are introduced for the hydropneumatic CRONE suspension, previously synthesized and realized without taking into consideration these uncertainties. So, the novel approach treated in this work is to find whether the uncertainties, which were previously neglected in the synthesis and the realization phases, alter the behaviour of the system or not. The results show that the fractional order system behaviour is not affected.

Keywords

CRONE suspension Hydropneumatic RC devices Structural uncertainties Nonlinear components System dynamics Fractional behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dugowson, S.: Les différentielles métaphysiques : histoire et philosophie de la généralisation de l’ordre de dérivation - Ph.D. Thesis, Université Paris Nord (1994)Google Scholar
  2. 2.
    Malti R., Moreau X., Khemane F., Oustaloup A.: Stability and resonance conditions of elementary fractional transfer functions Automatica. J. IFAC Int. Federation Automat. Control 47(11), 2462–2467 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  4. 4.
    Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, New York (1993)zbMATHGoogle Scholar
  5. 5.
    Dauphin-Tanguy G.: Les Bond-Graphs. Edition Hermès, Paris (2000)Google Scholar
  6. 6.
    Krishna B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91, 386–426 (2011)zbMATHCrossRefGoogle Scholar
  7. 7.
    Le Méhauté A., Nigmatullin R., et Nivanen L.: Flêche du temps et géométrie Fractale. Edition Hermès, Paris (1998)Google Scholar
  8. 8.
    Hartley T.T., Lorenzo C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lorenzo, C.F., Hartley, T.T.: Initialization of fractional differential equations: background and theory. In: Proceedings of the ASME 2007, DETC2007-34810, Las Vegas, Nevada (2007)Google Scholar
  10. 10.
    Lorenzo, C.F., Hartley, T.T.: Initialization of fractional differential equations: theory and application. In: Proceedings of the ASME 2007, DETC2007-34814, Las Vegas, Nevada (2007)Google Scholar
  11. 11.
    Oustaloup A.: La dérivation non entière : théorie, synthèse et Applications. Edition Hermès, Paris (1995)zbMATHGoogle Scholar
  12. 12.
    Charef, A., Fergani, N.: PIλDμ Controller Tuning For Desired Closed-Loop Response Using Impulse Response. In: Workshop on Fractional Deviation and Applications, Badajoz, Spain, October (2010)Google Scholar
  13. 13.
    Trigeassou, J.C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modeling and identification of a non integer order system. In: Proceedings of ECC’99, European Control Conference, Karlsruhe, Germany (1999)Google Scholar
  14. 14.
    Serrier, P., Moreau, X., Oustaloup, A.: Synthesis of a limited-bandwidth fractional differentiator made in hydropneumatic technology. In: Proceedings of IDETC/CIE 2005: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, USA, September 24–28 (2005)Google Scholar
  15. 15.
    Abi Zeid Daou R., Francis C., Moreau X.: Synthesis and implementation of non-integer integrators using RLC devices. Int. J. Electron. 96(12), 1207–1223 (2009)CrossRefGoogle Scholar
  16. 16.
    Serrier, P., Moreau, X., Oustaloup, A.: Volterra series based analysis of components nonlinearities in a limited-bandwidth fractional differentiator achieved in hydropneumatic technology. In: Proceedings of 2nd IFAC Workshop on Fractional Differentiation and its Applications, FDA 06, Porto, Portugal (2006)Google Scholar
  17. 17.
    Abi Zeid Daou, R., Francis, C., Moreau, X.: Study of the CRONE suspension RLC components’ nonlinearities based on Volterra series. Part 1: background and theory. In: The 4th IFAC Workshop on Fractional Differentiation and its Applications, FDA10, Badajoz, Spain, October 18–20 (2010)Google Scholar
  18. 18.
    Abi Zeid Daou, R., Moreau, X., Francis, C.: Study of the CRONE suspension RLC components’ nonlinearities based on Volterra series. Part 2: simulation results. In: The 4th IFAC Workshop on Fractional Differentiation and its Applications, FDA10, Badajoz, Spain, October 18–20 (2010)Google Scholar
  19. 19.
    Nise N.: Control Systems Engineering. Wiley, New York (2010)Google Scholar
  20. 20.
    Abi Zeid Daou, R.: Etude de l’influence des incertitudes sur le comportement d’un système dynamique non entier de première espèce - Ph.D. Thesis, Université Bordeaux 1 (2011)Google Scholar
  21. 21.
    Serrier, P.: Analyse de l’influence des non-linéarités dans l’approche CRONE: Application en isolation vibratoire. Ph.D. Thesis, Université Bordeaux 1, 30 Septembre (2008)Google Scholar
  22. 22.
    Volterra V.: Theory of functionals and of integrals and integro-differential equations. Dover, New York (1959)Google Scholar
  23. 23.
    Wiener N.: Nonlinear Problems in Random Theory. Wiley, New York (1958)zbMATHGoogle Scholar
  24. 24.
    Schetzen M.: The Volterra and Wiener Theories of Non-Linear Systems. Wiley-Intersciences, New York (1980)Google Scholar
  25. 25.
    Mirri D., Iuculano G., Filicori F., Pasini G., Vannini G., Gualtieri G.P.: A modified volterra series approach for nonlinear dynamic systems modeling. IEEE Trans. Circuits Syst. I Fundament. Theory Appl. 49(8), 1118–1128 (2002)CrossRefGoogle Scholar
  26. 26.
    Boyd S., Tang Y.S., Chua L.O.: Measuring Volterra Kernels. IEEE Trans. Circuits Syst. 30, 571–577 (1983)zbMATHCrossRefGoogle Scholar
  27. 27.
    Evans, C., Rees, D., Jones, L., Weiss, M.: Probing signals for measuring nonlinear Volterra Kernels. In: Proceedings of instrumentation and measurement technology conference (IMTC’ 95), Boston, MA, 10–15, June (1995)Google Scholar
  28. 28.
    Worden K., Manson G.: Random vibrations of a duffing oscillator using the Volterra series. J. Sound Vib. 217(4), 781–789 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Rugh W.J.: Nonlinear System Theory the Volterra Wiener Approach Baltimore, MD. Johns Hopkins University Press, Baltimore (1981)Google Scholar
  30. 30.
    George, D.A.: Continuous nonlinear systems. Technical Report 355, Research Laboratory of Electronics, M. I. T. (1959)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Roy Abi Zeid Daou
    • 1
    • 2
    Email author
  • Xavier Moreau
    • 1
  • Clovis Francis
    • 3
  1. 1.Laboratoire IMS, Department LAPSUniversity of Bordeaux ITalence Cedex, BordeauxFrance
  2. 2.Faculty of Public Health, Biomedical Technologies DepartmentLebanese German UniversityJouniehLebanon
  3. 3.Faculty of Engineering ILebanese UniversityTripoliLebanon

Personalised recommendations