Signal, Image and Video Processing

, Volume 6, Issue 3, pp 429–436 | Cite as

Fractional-order simulation tool for the brainstem vestibulo-ocular reflex (VOR)

  • R. CaponettoEmail author
  • G. Dongola
  • F. Pappalardo
Original Paper


The function of the oculomotor system is to control eye movements. To accomplish this function, oculomotor neural networks generate control signals in order to compensate eyeball dynamics. Existing models describe the dynamics of the eye and of the oculomotor system using integer-order operators. In this paper, a simulation tool that allows to investigate the fractional-order dynamics of the vestibulo-ocular reflex is proposed. Moreover, it will be shown that alterations in oculomotor neural network can be modeled by using fractional-order dynamics, confirming fractional-order systems’ capability in modeling physical phenomena.


Fractional order systems Vestibulo-ocular reflex Modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robinson D.A.: Control of eye movements, handbook of physiology. In: Brooks, V.B. (ed.) Section 1: The Nervous System, vol II, Part 2, pp. 1275–1320. American Physiological Society, Bethesda (1989)Google Scholar
  2. 2.
    Walls G.L.: The evolutionary history of eye movements. Vis. Res. 2, 69–80 (1964)CrossRefGoogle Scholar
  3. 3.
    Robinson D.A.: The use of control systems analysis in the neurophysiology of eye movements. Ann. Rev. Neurosci. 4, 462–503 (1981)CrossRefGoogle Scholar
  4. 4.
    Schneider L.W., Anderson D.J.: Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res. 112, 61–76 (1976)CrossRefGoogle Scholar
  5. 5.
    Correia M.J., Landolt J.P., Ni M.D., Eden A.R., Rae J.L.: A species comparison of linear and nonlinear transfer characteristics of primary afferents innervating the semicircular canal. In: Gualtierotti, T. (ed.) The Vestibular System: Function and Morphology, pp. 280–316. Springer, Berlin, Heidelberg, New York, NY (1981)CrossRefGoogle Scholar
  6. 6.
    Shinoda Y., Yoshida K.: Dynamic characteristics of responses to horizontal head angular acceleration in vestibulo-ocular pathway in the cat. J. Neurophisiol. 37, 653–673 (1974)Google Scholar
  7. 7.
    McFarland J.L., Fuchs A.F.: Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophisiol. 68, 319–332 (1992)Google Scholar
  8. 8.
    Scudder C.A., Fuchs A.F.: Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibulo-ocular reflex in trained rhesus monkeys. J. Neurophisiol. 68, 244–264 (1992)Google Scholar
  9. 9.
    Fuchs A.F., Scudder C.A., Kaneko C.R.S.: Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J. Neurophisiol. 60, 1874–1895 (1988)Google Scholar
  10. 10.
    Anastasio T.J., Correia M.J., Perachio A.A.: Spontaneous and driven responses of semicircular canal primary afferents in the unanesthetized pigeon. J. Neurophisiol. 54, 335–347 (1985)Google Scholar
  11. 11.
    Thorson J., Biederman-Thorson M.: Distributed relaxation processes in sensory adaptation. Science 183, 161–172 (1974)CrossRefGoogle Scholar
  12. 12.
    Robinson D.A.: The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res. 71, 195–207 (1974)CrossRefGoogle Scholar
  13. 13.
    Kamath B.Y., Keller E.L.: A neurological integrator for the oculomotor control system. Math. Biosci. 30, 341–352 (1976)zbMATHCrossRefGoogle Scholar
  14. 14.
    Cannon S.C., Robinson D.A., Shamma S.: A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Engineering Faculty DIEEIUniversity of CataniaCataniaItaly

Personalised recommendations