Signal, Image and Video Processing

, Volume 6, Issue 3, pp 453–461 | Cite as

Robustness evaluation of fractional order control for varying time delay processes

  • Cristina I. PopEmail author
  • Clara Ionescu
  • Robain De Keyser
  • Eva H. Dulf
Original Paper


In this paper, we investigate the robustness of a methodology to design fractional order PI controllers combined with Smith Predictors, for varying time delay processes. To overcome the drawback of possible instability associated with Smith Predictor control structures, mainly due to the changes in the time delay, the design focuses on ensuring robustness of the closed loop system against time delay uncertainties. The proposed method is based on time-domain performance specifications—more accessible to the process engineer, rather than the more abstract notions related to the frequency domain. A second advantage of the proposed method relies on additional robustness to plant uncertainties, achieved by maximizing open-loop gain margin. The convergence problems associated with optimization techniques, previously used in fractional order controller designs, are eliminated by an iterative procedure in computing the gain margin. The simulation example provided demonstrates the efficiency of the proposed method, in comparison to classical integer order PI controller.


Fractional order PI controller Smith Predictor Varying time delay Plant uncertainties Robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferreira, N.M.F., Machado, J.A.T.: Fractional-order hybrid control of robotic manipulators. In: Proceedings of the 11th International Conference on Advanced Robotics, pp 393–398, Coimbra, Portugal (2003)Google Scholar
  2. 2.
    Kailil A., Mrani N., Mliha T.M., Choukri S., Elalami N.: Low earth-orbit satellite attitude stabilization with fractional regulators. Int. J. Syst. Sci. 35(10), 559–568 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Manabe S.: A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dynam. 29, 251–268 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dulf, E.H., Festila, Cl., Dulf, F.-V., Pop, C.-I., Both, R.: Fractional Order Controller Design for 13C Separation Column. In: Proceedings of The 19th Mediterranean Conference on Control and Automation (2011) doi: 10.1109/MED.2011.5983150
  5. 5.
    Chen, Y., Dou, H., Vinagre, B., Monje, C.: A robust tuning method for fractional order PI controllers. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal (2006) doi: 10.3182/20060719-3-PT-4902.00003
  6. 6.
    Zhao, C., Xue, D., Chen, Y.: A fractional order PID tuning algorithm for a class of fractional order plants. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada (2005) doi: 10.1109/ICMA.2005.1626550
  7. 7.
    Oustaloup A.: La Commande CRONE: Commande Robuste d’Ordre Non Entier. Hermes, Paris (1991)zbMATHGoogle Scholar
  8. 8.
    Podlubny I.: Fractional order systems and PIλDμ controllers. In: IEEE T. Automat. Contr. 44, 208–214 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Monje C., Chen Y.Q., Vinagre B., Xue D., Feliu V.: Fractional order systems and controls. Springer, London (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Li H., Luo Y., Chen Y.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. In: IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)CrossRefGoogle Scholar
  11. 11.
    Cao J.Y., Cao B.G.: Design of fractional order controller based on particle swarm optimization. Int. J. Control. Autom. Syst. 4(6), 775–781 (2006)Google Scholar
  12. 12.
    Monje C.A., Vinagre B., Chen Y., Feliu V.: On fractional PIλ controllers: some tuning rules for robustness to plant uncertainties. Nonlinear Dynam. 38, 369–381 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Feliu-Batlle, V., Rivas-Perez, R., Sanchez-Rodriguez, L., Ruiz-Torija, M.A.: Robust fractional-order PI controller implemented on a laboratory hydraulic canal, J. Hydraul. Eng. (2009) doi: 10.1061/(ASCE)0733-9429
  14. 14.
    Smith O.J.M.: Closer control of loops with dead time. Chem. Eng. Prog. 53, 217–219 (1957)Google Scholar
  15. 15.
    Palmor Z.J., Halevi Y.: On the design and properties of multivariable dead time compensators. Automatica 19, 255–264 (1983)zbMATHCrossRefGoogle Scholar
  16. 16.
    Feliu-Batlle V., Rivas Pérez R., CastilloGarcíaF.J.Sanchez Rodriguez L.: Smith Predictor based robust fractional order control: Application to water distribution in a main irrigation canal pool. J. Process Contr. 19, 506–519 (2009)CrossRefGoogle Scholar
  17. 17.
    Normey-Rico J., Camacho E.: Control of Dead-time Processes. Springer, London (2007)Google Scholar
  18. 18.
    Khandani K., Jalali A.: A new approach to design Smith Predictor based fractional order controllers. Int. J. Comput. Electr. Eng. 2(4), 698–703 (2010)Google Scholar
  19. 19.
    Dorf R., Bishop R.: Modern Control Systems. Pearson Prentice Hall, Singapore (2008)Google Scholar
  20. 20.
    Oustaloup A.: La derivation non entière. Hermes, Paris (1991)Google Scholar
  21. 21.
    Dulf E., Festila Cl., Dulf F.: Robust nonlinear control of a separation column for 13C enrichment by cryogenic distillation of carbon monoxide. Chem. Listy 102(15), 1075–1078 (2008)Google Scholar
  22. 22.
    Axente D., Abrudean M., Baldea A.: Isotope Separation 15N, 18O, 10B, 13C by isotopic exchange (in Romanian). Casa Cartii de Stiinta, Cluj-Napoca, Romania (1994)Google Scholar
  23. 23.
    Festila Cl., Dulf E., Buzdugan T., Unguresan M.: Hydro- and Thermodynamic Processes in 13C Cryogenic Separation Column. Proc. Int. Symp. Syst. Theory SINTES 1, 103–107 (2007)Google Scholar
  24. 24.
    Festila, Cl., Pop, C.I., Dulf, E. H., Baldea, A., Gligan, M.: Flooding Process Analysis by 13C Cryogenic Separation Column. In: Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (2008) doi: 10.1109/AQTR.2008.4588801
  25. 25.
    Pop, C.-I., Dulf, E.-H., De Keyser, R., Ionescu, C. M., Muresan, B., Festila, Cl.: Predictive Control of the Multivariable Time Delay Processes in an Isotope Separation Column. In: Proceedings 6th IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania (2011) doi: 10.1109/SACI.2011.5872968

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Cristina I. Pop
    • 1
    Email author
  • Clara Ionescu
    • 2
  • Robain De Keyser
    • 2
  • Eva H. Dulf
    • 1
  1. 1.Department of Automatic ControlTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of Electrical energy, Systems and AutomationGhent UniversityGentBelgium

Personalised recommendations