Signal, Image and Video Processing

, Volume 6, Issue 3, pp 445–451 | Cite as

Boolean-based fractional order SMC for switching systems: application to a DC-DC buck converter

  • S. Hassan HosseinniaEmail author
  • Inés Tejado
  • Blas M. Vinagre
  • Dominik Sierociuk
Original Paper


The combination of sliding mode control and fractional order control (FOC) has received a considerable attention in the last years due to the advances and effectiveness of FOC solving robust control problems. This paper collects different methods to apply FOC in sliding mode problems through the use of fractional order surfaces and proposes a direct boolean control (BC) strategy based on this kind of surfaces. The application of BC is novel and takes advantage of avoiding the use of PWM. Simulation results for a DC-DC buck converter application are given to show the goodness of the proposed approach.


Fractional order sliding mode control Boolean control Switching systems DC-DC buck converter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Utkin V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control. 22, 212–222 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bartolini, G., Fridman, L., Pisano, A., Usai, E. (eds.): Modern Sliding Mode Control Theory: New Perspectives and Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  3. 3.
    Edwards, C., Fossas Colet, E., Fridman, L. (eds.): Advances in Variable Structure and Sliding Mode Control. Springer, Berlin (2006)zbMATHGoogle Scholar
  4. 4.
    Edwards C., Spurgeon S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis Ltd, London (1998)Google Scholar
  5. 5.
    Utkin V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Abadie V., Dauphin-Tanguy G.: Opened loop control of switching linear systems. J. Frankl. Inst. 330(5), 799–813 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Holderbaum, W.: Control strategy for boolean input systems. In: Proceedings of the 2002 American Control Conference, vol. 2, pp. 1260–1265. USA (2002)Google Scholar
  8. 8.
    Jou L.J., Liao C.-M., Chiu Y.-C.: A boolean algebra algorithm suitable for use in temperature–humidity control of a grafted seedling acclimatization chamber. Comput. Electron. Agric. 48(1), 1–18 (2005)CrossRefGoogle Scholar
  9. 9.
    Monje C.A., Chen Y.Q., Vinagre B.M., Xue D., Feliu V.: Fractional-Order Systems Controls: Fundamentals and Applications. Springer, London (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  11. 11.
    Podlubny I.: Fractional-order systems and PIλDμ controllers. IEEE Trans. Autom. Control. 41(1), 208–213 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Valerio, D.: Fractional robust system control. Technical University of Lisbon, Ph.D. thesis (2005)Google Scholar
  13. 13.
    Agrawal O.P.: A general formulation and solution for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2006)CrossRefGoogle Scholar
  14. 14.
    Jelicic Z.D., Petrovacki N.: Optimality conditions and a solution for fractional optimal control problems. Struct. Multidiscip. Optim. 38, 571–581 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vinagre B.M., Petras I., Podlubny I., Chen Y.Q.: Using fractional order adjustment rules and fractional order reference models in model reference adaptive control. Nonlinear Dyn. 29(1–4), 269–279 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hosseinnia S.H., Ghaderi R., Ranjbar A., Mahmoudian M., Momani S.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59(5), 1637–1643 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pisano A., Rapaic M.R., Jelicic Z.D., Usai E.: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order systems. Int. J. Robust Nonlinear Control. 20, 2045–2056 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Si-Ammour A., Djennoune S., Bettayeb M.: A sliding mode control for linear fractional systems with input and state delays. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2310–2318 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sira-Ramírez, H., Feliu, V.: A generalized PI sliding mode and PWM control of switched fractional systems. In: Modern Sliding Mode Control Theory. New Perspectives and Applications. Springer Lecture Notes in Control and Information Sciencies, vol. 375, pp. 215–236. Springer-Verlag (2008)Google Scholar
  20. 20.
    Tavazoei M.S., Haeri M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A. Stat. Mech. Appl. 387(1), 57–70 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pisano, A., Usai, E., Rapaic, M.R., Jelicic, Z.: Second-order sliding mode approaches to disturbance estimation and fault detection in fractional-order systems. In: Preprints of the 18th IFAC World Congress, pp. 2436–2441, Italy (2011)Google Scholar
  22. 22.
    Dadras, S., Momeni, H.R.: LMI-based fractional-order surface design for integral sliding-mode control of uncertain fractional-order nonlinear systems. In: Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications (FDA’10), Spain (2010)Google Scholar
  23. 23.
    Calderón A.J., Vinagre B.M., Feliu V.: Fractional order control strategies for power electronic buck converters. Signal Process. 86, 2803–2819 (2006)zbMATHCrossRefGoogle Scholar
  24. 24.
    Calderón, A.J., Vinagre, B.M., Feliu V.: On fractional sliding control. In: Proceedings of the 7th Portuguese Conference on Automatic Control (CONTROLO’06), Lisbon, Portugal (2006)Google Scholar
  25. 25.
    Delavari H., Ghaderi R., Ranjbar A., Momani S.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Faieghi, M.R., Delavari, H.: Fractional-order sliding mode controller for inverted pendulum. In: Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications (FDA’10), Spain (2010)Google Scholar
  27. 27.
    Efe M.O.: Fractional order sliding mode control with reaching law approach. Turk J. Electr. Eng. Comput. Sci. 18(5), 731–747 (2010)Google Scholar
  28. 28.
    Efe M.O., Kasnakoglu C.: A fractional adaptation law for sliding mode control. Int. J. Adapt. Control Signal Process. 22, 968–986 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Richard P.Y., Cormerais H., Buisson J.: A generic design methodology for sliding mode control of switched systems. Nonlinear Anal. 65(9), 1751–1772 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • S. Hassan Hosseinnia
    • 1
    Email author
  • Inés Tejado
    • 1
  • Blas M. Vinagre
    • 1
  • Dominik Sierociuk
    • 2
  1. 1.Department of Electrical, Electronic and Automation Engineering, Industrial Engineering SchoolUniversity of ExtremaduraBadajozSpain
  2. 2.Faculty of Electrical Engineering, Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations