Heartbeat biometrics for human authentication

  • Chetana HegdeEmail author
  • H. Rahul Prabhu
  • D. S. Sagar
  • P. Deepa Shenoy
  • K. R. Venugopal
  • L. M. Patnaik
Original Paper


Automated security is one of the major concerns of modern times. Secure and reliable authentication systems are in great demand. A biometric trait like the electrocardiogram (ECG) of a person is unique and secure. In this paper, we propose an authentication technique based on Radon transform. Here, ECG wave is considered as an image and Radon transform is applied on this image. Standardized Euclidean distance is applied on the Radon image to get a feature vector. Correlation coefficient between such two feature vectors is computed to authenticate a person. False Acceptance Ratio of the proposed system is found to be 2.19% and False Rejection Ratio is 0.128%. We have developed two more approaches based on statistical features of an ECG wave as our ground work. The result of proposed technique is compared with these two approaches and also with other state-of-the-art alternatives.


Correlation coefficient FAR FRR k-Means clustering Pair-wise distance Radon transform RMSE ROC Statistical hypothesis testing 


  1. 1.
    Jain A.K., Ross A., Prabhakar S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. 14(1), 4–20 (2004)Google Scholar
  2. 2.
    Boles, W., Chu, S.: Personal identification using images of the human palm. In: Proceedings of the IEEE TENCON Conference (1997)Google Scholar
  3. 3.
    Hegde, C., Manu, S., Deepa Shenoy, P. Venugopal, K.R., Patnaik, L.M.: Secure authentication using image processing and visual cryptography for banking applications. In: Proceedings of the International Conference on Advanced Computing (ADCOM-2008), pp. 65–72, December (2008)Google Scholar
  4. 4.
    Boles, W.: A security system based on human iris identification using wavelet transforms. In: Proceedings of the First International Conference Knowledge-Based Intelligent Electron Systems (1997)Google Scholar
  5. 5.
    Samal A., Iyengar P.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognit. 25(1), 65–77 (1997)CrossRefGoogle Scholar
  6. 6.
    Hegde, C., Srinath, U.S., Aravind Kumar, R., Rashmi, D.R., Sathish, S., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.: Ear pattern recognition using centroids and cross-points for robust authentication. In: Proceedings of the Second International Conference on Intelligent Human and Computer Interaction (IHCI-2010), pp. 378–384 (2010)Google Scholar
  7. 7.
    Dumn, D.: Using a multi-layer perceptron neural for human voice identification. In: Proceedings of the Fourth International Conference Signal Processing and Application Technologies (1993)Google Scholar
  8. 8.
    Hegde, C., Rahul Prabhu, H., Sagar, D.S., Vishnu Prasad, K., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.: Authentication of damaged hand vein patterns by modularization. In: Proceedings of IEEE Region Ten Conference (TENCON-2009) (2009)Google Scholar
  9. 9.
    Simon B.P., Eswaran C.: An ECG classifier designed using modified decision based neural network. Comput. Biomed. Res. 30, 257–272 (1997)CrossRefGoogle Scholar
  10. 10.
    Chan, A.D.C., Hamdy, M. M., Badre, A., Badee, V.: Person identification using electrocardiograms. In: IEEE Canadian Conference on Electrical and Computer Engineering (CCECE ’06.), pp. 1–4, May (2006)Google Scholar
  11. 11.
    Biel L., Pettersson O., Philipson L., Wide P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)CrossRefGoogle Scholar
  12. 12.
    Rijnbeek P.R., Witsenburg M., Schrama E., Hess J., Kors J.A.: New normal limits for the pediatric electrocardiogram. Eur. Heart J. 22, 702–711 (1985)CrossRefGoogle Scholar
  13. 13.
    Esbensen, K., Schonkopf, S., Midtgaard, T.: Multivarate analysis in practice. 1st ed. vol. 1 (1997)Google Scholar
  14. 14.
    Agrafioti, F., Hatzinakos, D.: Fusion of ECG sources for human identification. In: International Symposium on Communications, Control and Signal Processing, pp. 1542–1547 (2008)Google Scholar
  15. 15.
    Wang, Y., Plataniotis, K. N., Hatzinakos, D.: Integrating analytic and appearance attributes for human identification from ECG signals. In: Biometric Symposium (2006)Google Scholar
  16. 16.
    Shen, T.W., Tompkins, W.J., Hu, Y.H.: One-lead ECG for identity verification. In: Proceedings of Second Joint Conference of IEEE EMBS/BMES, pp. 62–63 (2002)Google Scholar
  17. 17.
    Kung S.Y., Taur J.S.: Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6(1), 170–181 (1995)CrossRefGoogle Scholar
  18. 18.
    Pan J., Tompkins W.J.: A real time QRS detection algorithm. IEEE Trans. Biomed. Eng. 33(3), 230–236 (1985)CrossRefGoogle Scholar
  19. 19.
    Plataniotis, K.N., Hatzinakos, D., Lee, J. K.M.: ECG biometric recognition without fiducial detection. In: Biometric Sysposium (2006)Google Scholar
  20. 20.
    Agrafioti, F., Hatzinakos, D.: ECG based recognition using second order statistics. In: Communication Networks and Services Research Conference, pp. 82–87 (2008)Google Scholar
  21. 21.
    Singh, Y.N., Gupta, P.: Biometrics method for human identification using electrocardiogram. In: Proceedings of ICB, pp. 1270–1279 (2009)Google Scholar
  22. 22.
    Swamy, P., Jayaraman, S., Chandra, M.G.: An improved method for digital time series signal generation from scanned ECG records. In: International Conference on Bioinformatics and Biomedical Technology (ICBBT) pp. 400–403 (2010)Google Scholar
  23. 23.
    Khalil, I., Sufi, F.: Legendre polynomials based biometric authentication using QRS complex of ECG. In: The International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 297–302 (2008)Google Scholar
  24. 24.
    Jose, C.R.S., Fred, A.L.N.: A biometric identification system based on thyroid tissue echo-morphology. In: International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 186–193 (2009)Google Scholar
  25. 25.
    Chen, B., Chandran, V.: Biometric based cryptographic key generation from faces. In: Proceedings of the 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, pp. 394–401 (2007)Google Scholar
  26. 26.
    Boulgouris N.V., Chi Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(3), 731–740 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ariyapreechakul, P., Covavisaruch, N.: Personal verification and identification via iris pattern using radon transform. In: Proceedings of First National Conference on Computing and Information Technology, pp. 287–292 (2005)Google Scholar
  28. 28.
    Laguna, P., Mark, R.G., Goldberger, A.L., Moody, G.B.: A database for evaluation of algorithms for measurement of QT and Other waveform intervals in the ECG. Computers in Cardiology, pp. 673–676 (1997)Google Scholar
  29. 29.
    Hegde, C., Prabhu, H.R., Sagar, D.S., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: Statistical analysis for human authentication using ECG waves. In: Accepted for Publication at 5th International Conference on Information Systems, Technology and Management (ICISTM)-2011. To be published by Springer Series in Communications in Computer and Information Science (CCIS)Google Scholar
  30. 30.
    Hegde, C., Prabhu, H.R., Sagar, D.S., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: Human authentication based on ECG waves using radon transform. In: Proceedings of SecTech/DRBC 2010, Springer Series in CCIS 122, pp. 197–206 (2010)Google Scholar
  31. 31.
    Agraoti, F., Hatzinakos, D.: Signal validation for cardiac biometrics In: Proceedings of IEEE ICASSP 2010, pp. 1734–1737 (2010)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Chetana Hegde
    • 1
    Email author
  • H. Rahul Prabhu
    • 2
  • D. S. Sagar
    • 2
  • P. Deepa Shenoy
    • 2
  • K. R. Venugopal
    • 2
  • L. M. Patnaik
    • 3
  1. 1.RNS Institute of TechnologyBangaloreIndia
  2. 2.Department of CSE, UVCEBangalore UniversityBangaloreIndia
  3. 3.DIATPuneIndia

Personalised recommendations