Skip to main content
Log in

Tartaglia-Pascal’s triangle: a historical perspective with applications

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a historical perspective of Tartaglia-Pascal’s triangle with its relations to physics, finance, and statistical signal processing. We start by introducing Tartaglia’s triangle and its numerous properties. We then consider its relationship with a number of topics: the Newton binomial, probability theory (in particular with the Gaussian probability density function, pdf), the Fibonacci sequence, the heat equation, the Schrödinger equation, the Black–Scholes equation of mathematical finance and stochastic filtering theory. Thus, the main contribution of this paper is to present a systematic review of the triangle properties, its connection to statistical theory, and its numerous applications. The paper has mostly a scientific-educational character and is addressed to a wide circle of readers. Sections 7 and 8 are more technical; thus, they may be of interest to more expert readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pascal, B.: Traitè du Triangle Aritmetique. http://www.lib.cam.ac.uk/deptserv/rarebooks/PascalTraite/ (1654)

  2. http://www.scienzasocietascienza.eu/materiali/tartaglia.pdf

  3. http://www.storyofmathematics.com/16th_tartaglia.html

  4. http://www.it.wikipedia.org/wiki/Niccol%C3%B2_Tartaglia

  5. Devlin K.: The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern, pp. 1–208. Perseus Book, New York (2008)

    MATH  Google Scholar 

  6. http://www.it.wikipedia.org/wiki/Blaise_Pascal

  7. Kak, S.: The golden mean and the physics of aesthetics. Arch. Phys. physics/0411195, 1–9 (2006)

    Google Scholar 

  8. Barrow, J.: Cosmic Imagery: Key Images in the History of Science, Copyright Barrow. pp. 1–608. The Bodley Head, London (2008)

  9. http://www.en.wikipedia.org/wiki/Probability_density_function

  10. Papoulis A.: Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw Hill, New York (1991)

    Google Scholar 

  11. Gowers, T., Barrow-Green, J., Leader, I. (eds.): The Princeton Companion of Mathematics. pp. 34, 51, 193, 216–219, 285, 456, 737, Princeton University Press, Princeton (2008)

  12. Mansfield, K.: Editor 50 mathematical ideas you really need to know. London (2007)

  13. Posamentier A.S., Lehmann I.: The (Fabulous) Fibonacci Numbers, Amherst (New York), pp. 1–385. Prometheus Books, Amherst (2007)

    Google Scholar 

  14. http://www.mathworld.wolfram.com/SierpinskiSieve.html

  15. Kim K., Shevlyakov G.: Why gaussianity?. IEEE Signal Process. Mag. 25(2), 102–113 (2008)

    Article  MathSciNet  Google Scholar 

  16. http://www.mathworld.wolfram.com/FibonacciNumber.html, July 2010

  17. Benavoli A., Chisci L., Farina A.: Fibonacci sequence, golden section, Kalman filter and optimal control. Signal Process. Elsevier 89, 1483–1488 (2009)

    MATH  Google Scholar 

  18. Capponi A., Farina A., Pilotto C.: Expressing stochastic filters via number sequences. Signal Process. 90(7), 2124–2132 (2010)

    Article  MATH  Google Scholar 

  19. Philips, S.M.: The logarithmic spiral basis of the Titius-Bode law, pp. 1–45. http://www.smphillips.8m.com/article-17.html

  20. Nelson E.: Feynman integrals and the Schrödinger equation. J. Math. Phys. 5, 332–343 (1964)

    Article  MATH  Google Scholar 

  21. Black F., Scholes M.: The pricing of options and corporate liabilities. J. Politi. Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  22. Drakakis K.: Application of signal processing to the analysis of financial data. IEEE Signal Process. Mag. 26(5), 156–160 (2009)

    Article  MathSciNet  Google Scholar 

  23. Scholes M.S.: Derivatives in a dynamic environment. Nobel Lect. 9, 127–154 (1997)

    Google Scholar 

  24. Cox J.C., Ross S.A., Rubinstein M.: Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)

    Article  MATH  Google Scholar 

  25. Jazwinski, A.H.: Stochastic Processes and Filtering Theory, pp. 97, 112, 126, 130, 131, 175, 178, 189. Academic Press, New York, London (1970)

  26. http://www.en.wikipedia.org/wiki/Brownianmotion

  27. Moss F., McClintock P.V.E.: Noise in Nonlinear Dynamical Systems Volume 1 Theory of Continuous Fokker—Planck Systems. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  28. Varshney L.R.: Local fidelity, constrained codes, and the Meru Prastara. IEEE Potentials 27, 27–32 (2008)

    Article  Google Scholar 

  29. Casti, J.: How normal is normal? Eng. Technol. http://kn.theiet.org/magazine/issues/0907/how-normal-0907.cfm. 25 April–8 May 2009

  30. Taleb N.M.: The Black Swan: The Impact of the Highly Improbable. Random House, New York (2007)

    Google Scholar 

  31. Lucky, R.W.: Black swans. What if Gaussian engineering is clear, simple, and wrong? IEEE Spectr. 47(11), 17 (2010)

    Google Scholar 

  32. Buchanan, M.: Ubiquity: The Science of History or Why the World is Simpler than we Think, ©Buchanan, pp. 1–224 (2000)

  33. Cristiani, E.: Chiamalo x! ovvero cosa fanno i matematici? pp. 95–96. Springer, Berlin (in Italian) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farina, A., Giompapa, S., Graziano, A. et al. Tartaglia-Pascal’s triangle: a historical perspective with applications. SIViP 7, 173–188 (2013). https://doi.org/10.1007/s11760-011-0228-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0228-6

Keywords

Navigation