Skip to main content
Log in

Effects of growth irradiance on growth, chlorophyll fluorescence and photosynthesis parameters of Gardenia jasminoides J. Ellis

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Light availability is a primary factor influencing the growth and survival of tree seedlings in the forest understory. The effects of growth irradiance on the growth, photosynthesis and chlorophyll fluorescence parameters of an evergreen shrub, Gardenia jasminoides, were investigated with three levels of light: full light, 52.2% light and 18.2% light. The results showed that G. jasminoides grown under 18.2% light attained the lowest plant height and the highest crown diameter. The highest and lowest values of ground diameter were obtained in the 52.2% light and 18.2% light environments, respectively. Leaf area increased in plants grown under shade conditions. G. jasminoides grown under 52.2% light had the greatest leaf biomass, stem biomass and total biomass. Shade resulted in significant reductions in electron transport rate through PSII (ETR), photochemical quenching (qP) and nonphotochemical quenching (NPQ). Plants grown under shade conditions had lower heat dissipation in the antenna and higher excess energy. Chlorophyll (Chl) a, Chl b, Chl (a + b) and carotenoids (Car) increased and the Chl a/b ratio decreased in response to shade. Area-based photosynthesis (Aarea), stomatal conductance (gs) and transpiration rate (E) decreased significantly with decreasing growth irradiance, while there was no significant difference in mass-based photosynthesis (Amass) between full light and 52.2% light. G. jasminoides had the highest whole-plant photosynthesis (Aplant) value in 52.2% light and the lowest value in 18.2% light. The results suggest that approximately 52.2% light is the optimum growth irradiance for G. jasminoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  • Arroyo-Perez E, Flores J, Gonzalez-Salvatierra C, Matias-Palafox ML, Jimenez-Sierra C (2017) High tolerance to high-light conditions for the protected species Ariocarpus kotschoubeyanus (Cactaceae). Conserv Physiol 5(1):cox042

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence:a probe of photosynthesis in vivo. Annu Rev Plant Biol 59(1):89–113

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Dall’Osto L (2021) Dissipation of light energy absorbed in excess: the molecular mechanisms. Annu Rev Plant Biol 72:47–76

    Article  CAS  PubMed  Google Scholar 

  • Cardoso AA, Randall JM, Jordan GJ (2018) Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum. Am J Bot 105(12):1967–1974

    Article  PubMed  Google Scholar 

  • Chen L, Cheng L (2003) Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up‐regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. J Exo bot 54(390):2165–2175

    Article  CAS  Google Scholar 

  • Chen JW, Kuang SB, Long GQ, Meng ZG, Li LG, Chen ZJ, Zhang GH, Yang SC (2014) Steady-state and dynamic photosynthetic performance and nitrogen partitioning in the shade-demanding plant Panax notoginseng under different levels of growth irradiance. Acta Physiol Plant 36(9):2409–2420

    Article  CAS  Google Scholar 

  • Chen L, Li M, Yang Z, Tao W, Wang P, Tian X, Li X, Wang W (2020a) Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional chinese medicine. J Ethnopharmacol 257:112829

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Xue G, Ni Q, Wang Y, Gao Q, Zhang Y, Xu G (2020b) Physicochemical and rheological characterization of pectin-rich polysaccharides from Gardenia jasminoides J. Ellis flower. Food Sci Nutr 8(7):3335–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmura DJ, Modrzynski J, Chmielarz P, Tjoelker MG (2017) Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit. Plant Biol 19(2):172–182

    Article  CAS  PubMed  Google Scholar 

  • Coble AP, Fogel ML, Parker GG (2017) Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiol 37(10):1415–1425

    Article  PubMed  Google Scholar 

  • Dai YS, Zonggen, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65(2):177–182

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III, Barker WW, Logan DH, Bowling BA, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98(2):253–264

    Article  CAS  Google Scholar 

  • Feng W, Miao, Miao H, Yang XLi-Gang (2016) Antioxidant activities of aqueous extracts from 12 chinese edible flowers in vitro and in vivo. Food Nutr Res 61(1):1265324–1265324

    Google Scholar 

  • Guo YH, Yuan C, Tang L, Peng JM, Zhang KL, Li G, Ma XJ (2016) Responses of clonal growth and photosynthesis in Amomum villosum to different light environments. Photosynthetica 54(3):396–404

    Article  CAS  Google Scholar 

  • Hamanishi ET, Thomas BR, Campbell MM (2012) Drought induces alterations in the stomatal development program in Populus. J Exp Bot 63(13):4959–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Wu L, Chen JR, Dong L (2011) Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica 49(4):611–618

    Article  CAS  Google Scholar 

  • Huang Z, Liu Q, Tigabu M, Jin S, Ma X, Liu B (2022) Plastic responses in growth, morphology, and biomass allocation of five subtropical tree species to different degrees of shading. Forests 13(7):996

    Article  Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ 26(6):857–865

    Article  PubMed  Google Scholar 

  • Kume A, Akitsu T, Nasahara KN (2018) Why is chlorophyll b only used in light-harvesting systems? J Plant Res 131(6):961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon AM, Lewis VR, Farrell AD, Umaharan P (2021) Photochemical responses to light in sun and shade leaves of Theobroma cacao L. (West African Amelonado). Sci Hortic-Amsterdam 276:109747

    Article  CAS  Google Scholar 

  • Liu B, Liu Q, Daryanto S, Guo S, Huang Z, Wang Z, Wang L, Ma X (2018) Responses of chinese fir and Schima superba seedlings to light gradients: implications for the restoration of mixed broadleaf-conifer forests from chinese fir monocultures. For Ecol Manag 419–420:51–57

    Article  Google Scholar 

  • Liu Y, Feng X, Zhang Y, Zhou F, Zhu P (2021) Simultaneous changes in anthocyanin, chlorophyll, and carotenoid contents produce green variegation in pink–leaved ornamental kale. BMC Genomics 22(1):455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabati J, Ahmadi-Lahijani MJ, Goldani M, Nezami A, Oskoueian A, Hosinaiyan M, Mohammadi M (2021) Lowering medium pH improves tolerance of tomato (Lycopersicon esculentum) plants to long-term salinity exposure. J Plant Nutr 44(13):1853–1868

    Article  CAS  Google Scholar 

  • Nicol L, Nawrocki WJ, Croce R (2019) Disentangling the sites of non-photochemical quenching in vascular plants. Nat Plants 5(11):1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13(3):396–410

    Article  Google Scholar 

  • Poorter L, Werger MJA (1999) Light environment, sapling architecture, and leaf display in six rain forest tree species. Am J Bot 86(10):1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Sayd SS, Taie H, Taha LS (2010) Micropropagation, antioxidant activity, total phenolics and flavonoids content of Gardenia jasminoides Ellis as affected by growth regulators. Int J Acad Res 2(3):184–191

    Google Scholar 

  • Shi Y, Ke X, Yang X, Liu Y, Hou X (2022) Plants response to light stress. J Genet Genomics 49(8):735–747

    Article  CAS  PubMed  Google Scholar 

  • Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55(405):2111–2120

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Hu YY, Yu WW, Song LL, Wu JS (2015) Growth, photosynthetic and physiological responses of Torreya grandis seedlings to varied light environments. Trees 29(4):1011–1022

    Article  CAS  Google Scholar 

  • Tang X, Liu G, Jiang J, Lei C, Zhang Y, Wang L, Liu X (2020) Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves. Funct Plant Biol 47(12):1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M (2021) The effect of low irradiance on leaf nitrogen allocation and mesophyll conductance to CO2 in seedlings of four tree species in subtropical China. Plants 10:2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Bhadouria R, Srivastava P, Devi RS, Chaturvedi R, Raghubanshi AS (2020) Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecol Processes 9(1):2

    Article  Google Scholar 

  • Tsialtas JT, Maslaris N (2008) Leaf allometry and prediction of specific leaf area (SLA) in a sugar beet (Beta vulgaris L.) cultivar. Photosynthetica 46(3):351–355

    Article  Google Scholar 

  • Wan Y, Zhang Y, Zhang M, Hong A, Yang H, Liu Y (2020) Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ 8:e9316

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao X, Li C, Li S, Zhu Q, Zhang H, Wang H, Yu C, St. Martin SK, Xie F (2017) Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul 83(3):409–416

    Article  CAS  Google Scholar 

  • Ye ZP, Kang HJ, An T, Duan HL, Wang FB, Yang X, Zhou SX (2020) Modeling light response of electron transport rate and its allocation for ribulose biphosphate carboxylation and oxygenation. Front Plant Sci 11:581851

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Guo Q, Luo S, Pan J, Yao S, Gao C, Guo Y, Wang G (2022) Light regimes regulate Leaf and Twigs Traits of Camellia oleifera (Abel) in Pinus massoniana Plantation Understory. Forests 13(6):918

    Article  Google Scholar 

  • Zhang J, Xie S, Yan S, Xu W, Chen J (2021) Light energy partitioning and photoprotection from excess light energy in shade-tolerant plant Amorphophallus xiei under steady-state and fluctuating high light. Acta Physiol Plant 43(9):125

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Youth Talent Training Program of Jiangxi Academy of Forestry (2023520803; 2021520801).

Author information

Authors and Affiliations

Authors

Contributions

XT conceived the experimental design. XT, WH, LW, and KL prepared the plant material and carried out the trials. XT analyzed the data and wrote the manuscript with support from all authors.

Corresponding author

Correspondence to Xinglin Tang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Huang, W., Wang, L. et al. Effects of growth irradiance on growth, chlorophyll fluorescence and photosynthesis parameters of Gardenia jasminoides J. Ellis. Biologia 78, 2679–2687 (2023). https://doi.org/10.1007/s11756-023-01450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-023-01450-2

Keywords

Navigation