Skip to main content
Log in

Cadmium impact on the growth and survival rate of great pond snail (Lymnaea stagnalis) in the chronic experiment

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Size-weight relationships are very important ecological and physiological characteristics of aquatic organisms. These data are essential for assessing the growth and reproduction processes in populations and ecosystems. There is a signifant variability in growth rates, size, and body weight in adults Lymnaea stagnalis in solutions containing Cd2+. The least sensitive size parameter to the cadmium ions in the chronic experiment is the shell height, and the most sensitive – its thickness. During the chronic experiment, the shell height of the pond snail increased over time in solutions of cadmium. The shell height growth rate did not differ significantly if compared with the mean values of this parameter from the control group. Time is the main factor causing changes in the body weight of the great pond snail under the influence of cadmium ions. Cadmium ions concentrations cause changes in shell thickness only in case of prolonged influence. The slowdown in the growth of shell thickness began to demonstrate statistically significant differences from the control values after 20–30 days of exposure. The survival of L. stagnalis individuals in a toxic environment depends on the concentration of the metal ion, the duration of its impact. In the range of chronic lethal concentrations, the number of the remaining alive snails decreased rapidly over time, and their survival rate was 2–3 times lower than in the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author - Anastasiia Zymaroieva, upon reasonable request.

References

  • Abdel Gawad SS (2018) Acute toxicity of some heavy metals to the fresh water snail, Theodoxus niloticus (Reeve, 1856). Egypt J Aquat Res 44(2):83–87. https://doi.org/10.1016/j.ejar.2018.06.004

    Article  Google Scholar 

  • Adams WJ, Rowland CD (2003) Aquatic toxicology test methods. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology. CRC Press, LLC, New York, pp 19–38

    Google Scholar 

  • Alekseev VA (1983) On the concepts of "sensitivity" and "resistance" of aquatic organisms to toxic effects. Hydrobiol J 19(3):77–81 [In Russian]

  • Alimov AF, Golikov AN (1974) Some regularities in the relationship between size and weight of mollusks. Hydrobiol J 53(4):517–530 [In Russian]

  • Arambasic M, Pasic M, Kojic L, Kalauzi A, Marcovic V (1987) The growth of pond snail Lymnaea stagnalis L. in laboratory conditions. Zool Jahrb Abt Anat Ontog Tiere 116(1):119–128

  • Birger TI (1979) Metabolism of aquatic invertebrates in a toxic environment. Nauk. Dumka, Kiev [In Russian]

  • Biuki NA, Savari A, Mortazavi MS, Zolgharnein H (2010) Acute toxicity of cadmium chloride on Chanos chanos and their behavior responses. World J Fish Marine Sci 2:481–486

    Google Scholar 

  • Bryan GW, Hummerstone LG (1987) Heavy metals in the burrowing bivalve Scrobicularia plana from contaminated and uncontaminated estuaries. J Mar Biol Assoc UK 58:401–419. https://doi.org/10.1017/S0025315400028071

    Article  Google Scholar 

  • Buikema AL, Niederlenner BR, Cairns S (1982) Biological monitoring partiv-toxicity testing. Water Res 16(3):239–262

    Article  CAS  Google Scholar 

  • Buzinova NS, Isakova EF (1987) Experience of ecological and physiological studies of the resistance of some aquatic organisms to environmental factors. Quest Comp Physiol Aquat Toxicol 2: 25–34 [In Russian]

  • Charbonneau JA, Keith DM, Hutchings JA (2019) Trends in the size and age structure of marine fishes. ICES J Marine Sci 76(4):938–945. https://doi.org/10.1093/icesjms/fsy180

    Article  Google Scholar 

  • Cheung SG, Tai KK, Leung CK, Siu YM (2002) Effects of heavy metals on the survival and feeding behaviour of the sandy shore scavenging gastropod Nassarius festivus (Powys). Marine Pollut Bull 45(1–12):107–113. https://doi.org/10.1016/S0025-326X(01)00324-1

    Article  CAS  Google Scholar 

  • Dmochowska K, Kamińska K, Frączek R et al (2013) Total protein and carbohydrate content and protease and disaccharidase activities in the hemolymph of Lymnaea stagnalis naturally infected with digenean larvae. Biologia 68:278–287. https://doi.org/10.2478/s11756-013-0153-y

    Article  CAS  Google Scholar 

  • Duyar HA, Bilgin Ö, Bilgin S (2018) Weight and length relationships (WLRs) and meat yield of brown garden snail, Helix aspersum (Müller, 1774) and Turkish snail, Helix lucorum Linnaeus, 1758 (Mollusca: Gastropoda: Helicidae) in the Sinop province, Turkey. Alınteri Zirai Bilimler Dergisi 33(2):183–192. https://doi.org/10.28955/alinterizbd.427314

  • Eklöf J, Austin Å, Bergström U, Donadi S, Eriksson BDHK, Hansen J, Sundblad G (2017) Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ 5:e2906. https://doi.org/10.7717/peerj.2906

    Article  PubMed  PubMed Central  Google Scholar 

  • Fedonyuk T, Fedoniuk R, Zymaroieva A, Pazych V, Aristarkhova E (2020) Phytocenological approach in biomonitoring of the state of aquatic ecosystems in Ukrainian Polesie. J Water Land Develop 44:65–74. https://doi.org/10.24425/jwld.2019.127047

    Article  Google Scholar 

  • Filenko OF, Lazareva VV (1989) Influence of toxic agents on general biological and cytological parameters in daphnia. Hydrobiol J 25(3):56–60 [In Russian]

  • Fodor I, Hussein AAA, Benjamin PR, Koene JM, Pirger Z (2020) The natural history of model organisms: the unlimited potential of the great pond snail, Lymnaea stagnalis. ELife 9:1–18. https://doi.org/10.7554/eLife.56962

    Article  Google Scholar 

  • Galperina GB, Zagranichny SV, Lvova AA (1983) Seasonal changes in the size and weight characteristics of Dreissena polymorpha andrusovi (Andr.) from the Northern Caspian. In: Biol. resources of Kasp. Sea. Nauka, Moscow, pp 111–118 [In Russian]

  • Gaspar MB, Santos MN, Vasconcelos P (2001) Weight - length relationships of 25 bivalve species (Mollusca: Bivalvia) from the Algarve coast (southern Portugal). J Mar Biol Assoc UK 81(5):805–807. https://doi.org/10.1017/s0025315401004623

    Article  Google Scholar 

  • Gawad A (2006) Toxicity and bioaccumulation of cadmium in the freshwater bivalve Corbicula fluminalis Muller, 1774. Egypt J Aquat Biol Fish 10(4):33–43

    Article  Google Scholar 

  • Golubev AP, Nagorskaya LL (1997) Quantitative aspects of intraspecific competition in the mollusk Physella integra (Gastropoda, Pulmonata). Ecology 1:30–33 [In Russian]

  • Hoang TC, Rand GM (2009) Exposure routes of copper: short term effects on survival, weight, and uptake in Florida apple snails (Pomacea paludosa). Chemosphere 76(3):407–414. https://doi.org/10.1016/j.chemosphere.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Liao W, Yan Z, Bai Y, Feng C, Xu Z, Xu D (2020) Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J Chem 2020:9010348. https://doi.org/10.1155/2020/9010348

    Article  CAS  Google Scholar 

  • Hose GC, Van Den Brink PJ (2004) Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Envir Contam Toxic 47(4):511–520. https://doi.org/10.1007/s00244-003-3212-5

    Article  CAS  Google Scholar 

  • Jarne P, Staedler T (1995) Population genetic structure and mating system evolution in freshwater pulmonates. Experientia 51(5):482–497. https://doi.org/10.1007/BF02143200

    Article  CAS  Google Scholar 

  • Johnson AB, Fogel NS, Lambert JD (2019) Growth and morphogenesis of the gastropod shell. Proc Natl Acad Sci U S A 116(14):6878–6883. https://doi.org/10.1073/pnas.1816089116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski R, Hopkin SP (1996) Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa). Ecotoxicol Environ Safe 34(1):59–69. https://doi.org/10.1006/eesa.1996.0045

    Article  CAS  Google Scholar 

  • Lau S, Mohamed M, Tan Chi Yen A, Su’Ut S (1998) Accumulation of heavy metals in freshwater molluscs. Sci Tot Envir 214(1–3):113–121. https://doi.org/10.1016/S0048-9697(98)00058-8

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environment: science and lateral management. Cambridge University Press, New York

    Google Scholar 

  • Lyashenko AV (1991) Linear dimensions and body weight of bivalve mollusks of the Sasyk reservoir. Hydrobiol J 27(3):102–107 [In Russian]

  • Mnkandla SM, Siwela AH, Basopo N (2019) Effects of chronic exposures of selected heavy metals on the glutathione S-transferase activity of freshwater snails Lymnaea natalensis in Zimbabwe. Afr J Aquat Sci 44(3):233–236. https://doi.org/10.2989/16085914.2019.1639491

    Article  CAS  Google Scholar 

  • Nica DV, Bura M, Gergen I, Harmanescu M, Bordean D-M (2012) Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chemistry Central Journal 6:55. https://doi.org/10.1186/1752-153X-6-55

  • Orlov OO, Fedoniuk TP, Iakushenko DM, Zymaroieva AА, Khant GА (2021) Distribution and ecological growth conditions of Utricularia australis R. Br. in Ukraine. J Water Land Develop 48(1–3):32–47. https://doi.org/10.24425/jwld.2021.136144

  • Pinkina TV (2006) Effect of the ionic form of cadmium on reproduction and development of Lymnaea stagnalis L. Hydrobiol J 42(1):68–74. https://doi.org/10.1615/HydrobJ.v42.i1.60

    Article  Google Scholar 

  • Pinkina TV (2010) Effect of the heavy metals on biological b characteristics of the pond snail (Lymnaea stagnalis L.) from the water bodies with different rate of radionuclide contamination. Hydrobiol J 46(3):03–111. https://doi.org/10.1615/HydrobJ.v46.i3.90

    Article  Google Scholar 

  • Pinkina TV, Pinkin AA (2018) Assessment of great pond snail toxicological resistance towards manganese (II) ions in water environment. Ukr J Ecol 8(1):719–729. https://doi.org/10.15421/2018_272

    Article  Google Scholar 

  • Pinkina T, Zymaroieva A, Matkovska S, Svitelskyi M, Ishchuk O, Fediuchka M (2019) Trophic characteristics of Lymnaea stagnalis (Mollusca: Gastropoda: Lymnaeidae) in toxic environment. Ekologia (Bratisl) 38(3):292–300. https://doi.org/10.2478/eko-2019-0022

    Article  Google Scholar 

  • Roshchin VE, Nagorskaya LL, Golubev AP, Plenin AE (1989) Ecological and physiological bases of different quality of growth and reproduction of the gastropod mollusk Physella integra (Gastropoda, Pulmonata). Ecology 4:63–69. [In Russian]

  • Salánki J, Farkas A, Kamardina T, Rózsa KS (2003) Molluscs in biological monitoring of water quality. Toxicol Lett 140–141:403–410. https://doi.org/10.1016/S0378-4274(03)00036-5

    Article  CAS  PubMed  Google Scholar 

  • Shuhaimi-Othman M, Nur-Amalina R, Nadzifah Y (2012) Toxicity of metals to a freshwater snail, Melanoides tuberculata. Sci World J 2012:125785. https://doi.org/10.1100/2012/125785

    Article  CAS  Google Scholar 

  • Spyra A, Strzelec M (2019) The implications of the impact of the recreational use of forest mining ponds on benthic invertebrates with special emphasis on gastropods. Biologia 74:981–992. https://doi.org/10.2478/s11756-019-00221-2

    Article  CAS  Google Scholar 

  • Stadnichenko AP (2014) Effects of ferric sulfate on quick behavioral and physiological responses of the great ramshorn snail (Mollusca: Gastropoda: Pulmonata). Hydrobiol J 50(6):41–46. https://doi.org/10.1615/HydrobJ.v50.i6.40

    Article  Google Scholar 

  • Stroganov NS (1971) Methods for determining the toxicity of the aquatic environment: Methods of biological research in aquatic toxicology. Nauka, Moscow [In Russian]

  • Stroganov NS, Danilchenko OP, Amochaeva EI (1977) Changes in the plastic metabolism of mollusks Lymnaea stagnalis under the influence of tributyltin chloride in low concentrations. Biol Sci 4:75–78 [In Russian]

  • Strömgren T (1982) Effect of heavy metals (Zn, Hg, Cu, Cd, Pb, Ni) on the length growth of Mytilus edulis. Mar Biol 72(1):69–72. https://doi.org/10.1007/BF00393949

    Article  Google Scholar 

  • Sunila I, Lindström R (1985) Survival, growth and shell deformities of copper- and cadmium-exposed mussels (Mytilus edulis L.) in brackish water. Estuar Coast Shelf Sci 21(4):555–565. https://doi.org/10.1016/0272-7714(85)90056-3

    Article  CAS  Google Scholar 

  • Szybiak K, Gabała E, Leśniewska M (2015) Reproduction and shell growth in two clausillids with different reproductive strategies. Biologia 70(5):625–631. https://doi.org/10.1515/biolog-2015-0076

    Article  Google Scholar 

  • Veselov EA (1968) The main phases of the action of toxic substances on organisms. Proceedings of scientific confrence on the question of aquatic toxicology. Nauka, Moskow, pp 15–16 [In Russian]

  • Zymaroieva A, Zhukov O, Fedoniuk T, Pinkina T, Vlasiuk V (2021) Edaphoclimatic factors determining sunflower yields spatiotemporal dynamics in northern Ukraine. OCL 28:26. https://doi.org/10.1051/ocl/2021013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Zymaroieva.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkina, T., Zymaroieva, A. & Fedoniuk, T. Cadmium impact on the growth and survival rate of great pond snail (Lymnaea stagnalis) in the chronic experiment. Biologia 77, 749–756 (2022). https://doi.org/10.1007/s11756-022-01015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-022-01015-9

Keywords

Navigation