Skip to main content

First report, morphological and molecular characterization of Caenorhabditis brenneri (Nematoda: Rhabditidae) isolated from the giant African land snail Achatina fulica (Gastropoda: Achatinidae)

Abstract

Gastropods are extremely diverse taxa comprising nearly 60,000 species, of which, the giant African land snail, Achatina fulica is a well-known member. It is an invasive species, and it serves as vector and host for several free-living and parasitic nematodes. This makes studies on the diversity of nematodes isolated from gastropods be more emphasized. Studies have been conducted on other Caenorhabditis-gastropod associations such as in the model organism C. elegans, however, less attention is given to other Caenorhabditis species. Through morphological and morpho-taxometrical data, and analysis of the D2-D3 of 28S rDNA and 18S rDNA regions, nematodes found inside a dissected A. fulica cadaver from Kabacan, North Cotabato (7°6’3.076” N, 124°51’68.33” E) in Mindanao, Philippines were identified as Caenorhabditis brenneri. We herein report for the first time C. brenneri from A. fulica. Moreover, to our knowledge, this is also the first report of C. brenneri-gastropod association.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

All available data are included in this manuscript.

Code availability

Not applicable.

References

  • Amrit FR, Ratnappan R, Keith SA, Ghazi A (2014) The C. elegans lifespan assay toolkit. Methods 68(3):465–475. https://doi.org/10.1016/j.ymeth.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Caldwell KN, Beuchat LR, Williams PL (2003) Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria. J Food Prot 6(9):1543–1549. https://doi.org/10.4315/0362-028x-66.9.1543

    Article  Google Scholar 

  • Andrade-Porto SM, Souza KC, Cárdenas MQ, Roque RA, Pimpão DM, Araújo CS, Malta JC (2012) Occurrence of Aelurostrongylus abstrusus (Railliet, 1898) larvae (Nematoda: Metastrongylidae) infecting Achatina (Lissachatina) fulica Bowdich, 1822 (Mollusca: Gastropoda) in the Amazon region. Acta Amazon 42(2):245–250. https://doi.org/10.1590/s0044-59672012000200010

    Article  Google Scholar 

  • Baird SE, Emmons SW, Fitch DHA (1994) Caenorhabditis vulgaris sp. n. (Nematoda: Rhabditidae): a necromenic associate of pill bugs and snails. Nematologica 40(1):1–11. https://doi.org/10.1163/003525994x00012

    Article  Google Scholar 

  • Baird SE, Sutherlin ME, Fitch DHA, Emmons SW (1990) Strange bedfellows. Worm Breed Gaz 11(4):89

    Google Scholar 

  • Baird SE, Sutherlin ME, Emmons SW (1992) Reproductive isolation in Rhabditidae (Nematoda: Secernentea): mechanisms that isolate six species of three genera. Evolution 46:585–594

    Article  Google Scholar 

  • Barrière A, Fèlix MA (2005) High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 15:1176–1184. https://doi.org/10.1016/j.cub.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  • Barrière A, Yang S, Pekarek E, Thomas CG, Haag ES, Ruvinsky I (2008) Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Res 19(3):470–480. https://doi.org/10.1101/gr.081851.108

    Article  CAS  Google Scholar 

  • Bovien P (1937) Some types of association between nematodes and insects. Videnskabelige Meddelelser fra Dansk Naturhistorik Forening 101:1–114

  • Campos-Herrera R, Escuer M, Robertson L, Gutiérrez C (2006) Morphological and ecological characterization of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain isolated from Bibo hortulanus (Diptera: Bibionidae) in Spain. J Nematol 38(1):68–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caswell-Chen EP, Chen J, Lewis EE, Douhan GW, Nadler SA, Carey JR (2005) Revising the standard wisdom of C. elegans natural history: Ecology of longevity. SAGE KE 40:pe30–pe30. https://doi.org/10.1126/sageke.2005.40.pe30

    Article  Google Scholar 

  • Cho S, Jin SW, Cohen A, Ellis RE (2004) A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 14(7):1207–1220. https://doi.org/10.1101/gr.2639304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantino-Santos DM, Santos B, Soriano JM, Dy JS, Fontanilla IK (2014) Philippine survey of nematode parasite infection and load in the giant African snail Achatina fulica indicate Angiostrongylus cantonensis infection in Mindanao. Sci Diliman 26(2):72–84

    Google Scholar 

  • Flores P, Alvarado A, Lankin G, Lax P, Prodan S, Aballay E (2021) Morphological, molecular, and ecological characterization of a native isolate of Steinernema feltiae (Rhabditida: Steinernematidae) from southern Chile. Parasit Vectors 14:45. https://doi.org/10.1186/s13071-020-04548-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonderie P, Bert W, Moens T, Steel H (2013) Experimental induction of intraspecific morphometric variability in a single population of Halicephalobus cf gingivalis may surpass total interspecific variability. Nematology 15(5):529–544. https://doi.org/10.1163/15685411-00002699

    Article  Google Scholar 

  • De Grisse AT (1969) Redescription ou modification de quelques techniques utilisees dansl’etude des nematodes phytoparasitaires. Meded Rijksfakulteit Landbowwetenschappen Gent 34:351–369

    Google Scholar 

  • De Ley P, Mundo-Ocampo M (2004) The cultivation of nematodes. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. Tsinghua, China University Press, Beijing, pp 541–619

  • Dougherty EC (1953) The genera of the subfamily Rhabditinae Micoletzky, 1922 (Nematoda). In: Dayal J, Singh KS (eds) Thapar Commemoration Volume. University of Lucknow, Lucknow, pp 69–76

    Google Scholar 

  • Dougherty EC, Nigon V (1949) A new species of the free-living nematode genus Rhabditis of interest in comparative physiology and genetics. J Parasitol 35:11

    Google Scholar 

  • Félix M, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–R969. https://doi.org/10.1016/j.cub.2010.09.050

    Article  CAS  PubMed  Google Scholar 

  • Fitch DH, Bugaj-Gaweda B, Emmons SW (1995) 18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis. Mol Biol Evol 12(2):346–358

    CAS  PubMed  Google Scholar 

  • Fodor A, Timar T (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangaloreiensis). II. Competitions with a juvenile hormone analog (Methoprene). Gen Comp Endocrinol 74:32–44. https://doi.org/10.1016/0016-6480(89)90111-1

    Article  CAS  PubMed  Google Scholar 

  • Fodor A, Timar T, Kiss I, Hosztafi S, Varga E, Soos J, Sebok P (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangaloreiensis). I. Structure/activity relations. Gen Comp Endocrinol 74:18–31

    Article  CAS  Google Scholar 

  • Glen DM, Moens R (2002) Agriolimacidae, Arionidae and Milacidae as pests in West European cereals. In: Barker GM (ed) Molluscs as Crop Pests. CABI Publishing, Wallingford, pp 271–300

    Chapter  Google Scholar 

  • Grewal PS, Grewal PSK, Tan L, Adams BJ (2003) Parasitism of molluscs by nematodes: Types of associations and evolutionary trends. J Nematol 35(2):146–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong RL, Villwock A, Sommer RJ (2005) Cultivation of the rhabditid Poikilolaimus oxycercus as a laboratory nematode for genetic analyses. J Exp Zool A Comp Exp Biol 303(9):742–760

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  Google Scholar 

  • Ivanova ES, Panayotova-Pencheva MS, Spiridonov SE (2013) Observations on the nematode fauna of terrestrial molluscs of the Sofia area (Bulgaria) and the Crimea peninsula (Ukraine). Russ J Nematol 21:41–49

    Google Scholar 

  • Jovelin R (2009) Rapid sequence evolution of transcription factors controlling Neuron differentiation in Caenorhabditis. Mol Biol Evol 26(10):2373–2386. https://doi.org/10.1093/molbev/msp142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiontke KC, Félix MA, Ailion M, Rockman MV, Braendle C, Pénigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11(1):1–8

    Article  Google Scholar 

  • Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DH (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci, USA 101(24):9003–9008. https://doi.org/10.1073/pnas.0403094101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. WormBook. https://doi.org/10.1895/wormbook.1.37.1

  • Lee H, Choi M, Lee D, Kim H, Hwang H, Kim H, Park S, Paik Y, Lee J (2011) Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci 15(1):107–112. https://doi.org/10.1038/nn.2975

    Article  CAS  PubMed  Google Scholar 

  • Mayer WE, Herrmann M, Sommer RJ (2007) Phylogeny of the nematode genus Pristionchus and implications for biodiversity, biogeography and the evolution of hermaphroditism. BMC Evol Biol 7:104. https://doi.org/10.1186/1471-2148-7-104

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales N, Morales-Montero P, Puza V, San-Blas E (2016) First report of Heterorhabditis amazonensis from Venezuela and characterization of three populations. J Nematol 48(3):139–147. https://doi.org/10.21307/jofnem-2017-021

    Article  PubMed  PubMed Central  Google Scholar 

  • Mengert H (1953) Nematoden und Schnecken. Zeitschrift für Morphologie und Ó¦kologie der Tiere 41:311–349

    Article  Google Scholar 

  • Mwangi J, Gichuki C, Wanjohi W, Runo S, Maina P (2016) Sequence variation in the rDNA region of root-knot nematodes (Meloidogyne spp) infecting indigenous leafy vegetables in Kisii and Transmara sub-countries, Kenya. Annu Res Rev Biol 9(3):1–10. https://doi.org/10.9734/arrb/2016/17985

    Article  Google Scholar 

  • Nermuť J, Půža V, Mráček Z (2014) The effect of different growing substrates on the development and quality of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Sci Technol 24(9):1026–1038. https://doi.org/10.1080/09583157.2014.9159

    Article  Google Scholar 

  • Nunn GB (1992) Nematode molecular evolution. PhD dissertation, University of Nottingham, Nottingham, UK

  • Petersen C, Hermann RJ, Barg M, Schalkowski R, Dirksen P, Barbosa C, Schulenburg H (2015) Travelling at a slug’s pace: Possible invertebrate vectors of Caenorhabditis nematodes. BMC Ecol 15(1):1–13. https://doi.org/10.1186/s12898-015-0050-z

    Article  CAS  Google Scholar 

  • Pieterse A, Malan A, Ross J (2016) Nematodes that associate with terrestrial molluscs as definitive hosts, including Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae) and its development as a biological molluscicide. J Helminthol 91(5):517–527. https://doi.org/10.1017/s0022149x16000572

    Article  Google Scholar 

  • Port G, Ester A (2002) Gastropods as pests in vegetable and ornamental crops in Western Europe. In: Barker GM (ed) Molluscs as Crop Pests. Hamilton, New Zealand, pp 337–351. https://doi.org/10.1079/9780851993201.0337

  • Richter S (1993) Phoretic association between the dauer juveniles of Rhabditis stammeri (Rhabditidae) and life history stages of the burying beetle Nicrophorus vespilloides (Coleoptera: Silphidae). Nematologica 39(1-4):346–355. https://doi.org/10.1163/187529293X00295

  • Scholze VS, Sudhaus W (2011) A pictorial key to current genus groups of “Rhabditidae”. J Nematode Morpho Syst 14(2):105–112

    Google Scholar 

  • Schreurs J (1963) Investigations on the Biology, Ecology and Control of Giant African Snail in West New Guinea. Manokwari Agricultural Research Station, Western New Guinea, Indonesia, A Report, p 18

    Google Scholar 

  • Seehabut V (2005) Nematodes in alimentary tracts of giant African snails (Achatana fulica) in Thailand. Kamphaengsaen Acad J 3(1):37–41

    Google Scholar 

  • Seinhorst J (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4(1):67–69. https://doi.org/10.1163/187529259x00381

    Article  Google Scholar 

  • Stock SP, Mrácek Z, Webster J (2000) Morphological variation between allopatric populations of Steinernema kraussei (Steiner, 1923) (Rhabditida: Steinernematidae). Nematology 2(2):143–52

    Article  Google Scholar 

  • Sudhaus W (1974) Zur Systematik, Verbreitung, Ökologie und Biologie neuer und wenig bekannter Rhabditiden (Nematoda). Teil Zool Jb Syst 101 2:417–465

    Google Scholar 

  • Sudhaus W (2010) Preadaptive plateau in Rhabditida (Nematoda) allowed the repeated evolution of zooparasites, with an outlook on evolution of life cycles within Spiroascaridaa-Paleodiversity 3(Supplement):117–130

  • Sudhaus W (2018) Various evolutionary avenues of Nematoda to parasitism in Gastropoda. Soil Org 90(3):115–122. https://doi.org/10.25674/lyds-c108

    Article  Google Scholar 

  • Sudhaus W, Kiontke K (1996) Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae, Nematoda). J Zoolog Syst Evol Res 34:217–233

    Article  Google Scholar 

  • Sudhaus W, Kiontke K (2007) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group. Zootaxa 1456(1):45–62. https://doi.org/10.11646/zootaxa.1456.1.2

  • Tsai HC, Lee SS, Huang CK, Yen CM, Chen ER, Liu YC (2004) Outbreak of eosinophilic meningitis associated with drinking raw vegetable juice in southern Taiwan. Am J Trop Med Hyg 71(2):222–6. https://doi.org/10.4269/ajtmh.2004.71.222

    Article  PubMed  Google Scholar 

  • Tunholi-Alves VM, Tunholi VM, Pinheiro J, Thiengo SC (2012) Effects of infection by larvae of Angiostrongylus cantonensis (Nematoda, Metastrongylidae) on the metabolism of the experimental intermediate host Biomphalaria glabrata. Exp Parasitol 131(2):143–147. https://doi.org/10.1016/j.exppara.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  • van Megen H, van den Elsen S, Mooijman P, Bakker F, Bakker J, Helder J (2004) Biological and systematic implications of a phylum-wide phylogenetic analyses of ~ 2,800 nearly full length small subunit ribosomal DNA sequences from nematodes. NCBI GenBank. https://www.ncbi.nlm.nih.gov/nuccore/KJ636315. Accessed 31 Jan 2021

  • Ye W, Giblin-Davis RM (2013) Molecular characterization and development of real-time PCR assay for pine-wood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). PLoS ONE 8(11):e78804. https://doi.org/10.1371/journal.pone.0078804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li C (2020) Heterorhabditis bacteriophora isolate NJ large subunit ribosomal RNA gene, partial sequence. NCBI GenBank. https://www.ncbi.nlm.nih.gov/nuccore/1834193876. Accessed 31 Jan 2021

Download references

Acknowledgements

This research was funded by the Accelerated Science and Technology Human Resource Development Program-National Science Consortium (ASTHRDP-NSC) program of the Department of Science and Technology (DOST). We are grateful to Dr. Praikajan Nimkingrat from the National Biological Control Research Center of Khon Kaen University, Thailand, for the technical support with microscopic works, especially for the morpho-taxometrics part of this study. Sincere thanks are also due to Dr. Irma Tandingan-De Ley for providing us some reference materials and to the anonymous reviewers for helping us improve this manuscript.

Funding

This study is funded by Accelerated Science and Technology Human Resource Development Program-National Science Consortium (ASTHRDP-NSC) program of the Department of Science and Technology (DOST).

Author information

Authors and Affiliations

Authors

Contributions

MAD and LBD did the field and laboratory works. MAD wrote the first draft of the manuscript. LBD helped in the morpho-taxometrics analysis, and editing of the manuscript. PRS carried out the sequence alignment, phylogenetic analysis, edited and improved the manuscript. NHS helped with the conceptualization of the research, shaped the research, supervised MAD and LBD, helped with the protocols during field and laboratory works, corrected, edited and improved the manuscript.

Corresponding author

Correspondence to Nanette Hope Sumaya.

Ethics declarations

Conflicts of interest/competing interest

The authors declare that they have no conflict of interest.

Ethics approval

This research does not contain human participants. This research used A.fulica which is considered to be invasive and pest, and there was no live dissection conducted.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diano, M.A., Dalan, L., Singh, P.R. et al. First report, morphological and molecular characterization of Caenorhabditis brenneri (Nematoda: Rhabditidae) isolated from the giant African land snail Achatina fulica (Gastropoda: Achatinidae). Biologia 77, 469–478 (2022). https://doi.org/10.1007/s11756-021-00972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11756-021-00972-x

Keywords