Skip to main content

Distinct Odonata assemblage variations in lentic reservoirs in Slovakia (Central Europe)


The effects of various aquatic habitats on the abundance, species richness, diversity and taxonomic distinctness of Odonata were studied. The impact of environmental factors and living conditions in lentic habitats were expressed by the composition of coenoses, on the evaluation we used the Dragonfly Biotic Index. The positive effects of habitat heterogeneity on biodiversity are well known, but it is not clear how the diversity of studied and ecologically important taxa, such as odonates, may vary in different water reservoirs. We investigated how Odonata community metrics (composition, abundance, diversity and environmental compatibility) differ in lentic water: ponds, fishponds, excavation of mineral material and in marshlands, where biodiversity plays an important role. Using an entomological mesh, we took samples in the south-western part of Slovakia in six geo-morphological units at 54 study sites during four years. This study detected distinct odonates assemblage variations among habitats and heterogeneity among gradients. Wide ranges of microhabitats with different environmental properties create appropriate conditions for living span of them. Surprisingly, the highest species richness was recorded in the excavation of mineral materials habitats. Stagnicolous Odonata species correlated (CCA) with the habitats of excavation of mineral material and marshlands; showed links to the littoral vegetation and dense vegetation cover. While the euryecious species have been linked to the ponds and fishponds; and correlated with the water body size. It seems to be degraded habitats are not so much suitable for rare and endangered species, but to preserve the biological value of the environment and for the existence of the high abundance and species richness of odonates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All collected material - data were deponed to the Constantine the Philosopher University in Nitra, Slovakia.


  1. Babošová M, Noskovič J, Porhajašová JI (2017) Dragonflies (Odonata) of the nature reserve Torozlín and water area Komjatice-Štrkáreň gravel-pit in the southwestern part of the Slovak Republic. Acta Fytotechn Zootechn 20:49–53.

  2. Babošová M, Porhajašová JI, Ernst D (2019) Dragonflies (Odonata) of botanical Garden's pond of SUA in Nitra. Acta Fytotechn Zootechn 22:110–113.

  3. Barilla J, Simr P, Sýkorová K (2016) Microsoft excel – podrobná užívatelská příručka. Computer Press, Brno

  4. Bond JG, Novelo-Gutiérrez R, Ulloa A, Rojas JC, Quiroz-Martínez H, Williams T (2006) Diversity, abundance, and disturbance response of Odonata associated with breeding sites of Anopheles pseudopunctipennis (Diptera: Culicidae) in southern Mexico. Environ Entomol 35:1561–1568.

    Article  Google Scholar 

  5. Butler RG, de Maynadier PG (2008) The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). J Insect Conserv 12:23–36.

    Article  Google Scholar 

  6. Chovanec A, Schiemer F, Gressler S et al (2000) Constructed inshore zones as river corridors through urban areas – the Danube in Vienna: preliminary results. Regul Rivers: Res Mgmt 16:175–187.<175:AID-RRR578>3.0.CO;2-C

  7. Clark KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531.

    Article  Google Scholar 

  8. Clark TE, Samways MJ (1996) Dragonflies (Odonata) as indicators of biotype quality in the Kruger National Park, South Africa. J Appl Ecol 33:1001–1012.

    Article  Google Scholar 

  9. Corbet PS, Brooks S (2008) Dragonflies. Collins new naturalist library no 106, Harper Collins, London

  10. Corbet PS (1993) Are Odonata useful as bioindicators? Libellula 12:91–102

    Google Scholar 

  11. Corbet PS (1999) Dragonflies: behavior and ecology of Odonata. Cornell University Press, NY.

  12. Danilov R, Ekelund NGA (1999) The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in Central Sweden. Sci Total Environ 234:15–23.

    CAS  Article  Google Scholar 

  13. David S, Šácha D (2019) Komentovaný seznam vážek (Odonata) Slovenské republiky. Ochrana prírody 33:49–78

  14. De Oliveiro JMB, Shimano Y, Gardner TA, Hughes RM, De Marco P (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40:733–744.

    Article  Google Scholar 

  15. Dijkstra KDB, Lewington R (2006) Field guide to the dragonflies of Britain and Europe: including Western Turkey and North-Western Africa. British Wildlife Publishing, Dorset

  16. Dutra S, De Marco P (2015) Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecol Indic 49:132–142.

    Article  Google Scholar 

  17. Engelmann HD (1978) Zur Dominanzklassifizierung von Bodenarthropoden. Pedobiologia 18:378–380

    Google Scholar 

  18. Goertzen D, Suhling F (2019) Urbanization versus other land use: diverging effects on dragonfly communities in Germany. Divers Distrib 25:35–47.

    Article  Google Scholar 

  19. Golfieria B, Hardersenb S, Maiolinic B, Suriana N (2016) Odonates as indicators of the ecological integrity of the river corridor: development and application of the Odonate River index (ORI) in northern Italy. Ecol Indic 61:234–247.

    Article  Google Scholar 

  20. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9 pp.

  21. Harabiš F, Dolný A (2010) Ecological factors determining the density – distribution of central European dragonflies (Odonata). Eur J Entomol 107:571–577.

    Article  Google Scholar 

  22. Heidemann H, Seidenbusch R (1993) Die Libellenlarven Deutschlands und Frankreichs. Verlag Erna Bauer, Keltern

  23. Jacob U (1969) Untersuchungen zu den Beziehungen zwischen Okologie und Verbreitung heimischer Libellen. Faun Abh Staat Mus Tierk Dresden 2:197–239

    Google Scholar 

  24. Johansson F, Brodin T (2003) Effects of fish predators and abiotic factors on dragonfly community structure. J Freshw Ecol 18:415–423.

    Article  Google Scholar 

  25. Juen L, Cabette HSR, De Marco P (2007) Odonate assemblage structure in relation to basin and aquatic habitat structure in Pantanal wetlands. Hydrobiologia 579:125–134.

    Article  Google Scholar 

  26. Jun Y, Kim N, Kim S, Park Y, Kong D, Hwang S (2016) Spatial distribution of benthic macroinvertebrate assemblages in relation to environmental variables in Korean nationwide streams. Water 8:27.

    Article  Google Scholar 

  27. Kalkman VJ, Clausnitzer V, Dijksta KDB, Paulson R, Van Tol J (2008) Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595:351–363.

    Article  Google Scholar 

  28. Khelifa R (2019) Sensitivity of biodiversity indices to life history stage, habitat type and landscape in Odonata community. Biol Conserv 237:63–69.

  29. Kietzka GJ, Pryke JS, Samways MJ (2017) Aerial adult dragonflies are highly sensitive to in-water conditions across an ancient landscape. Divers Distrib 23:14–26.

    Article  Google Scholar 

  30. Kutcher TE, Bried JT (2014) Adult Odonata conservatism as an indicator of freshwater wetland condition. Ecol Indic 38:31–39.

    Article  Google Scholar 

  31. Lee D, Lee D, Bae M, Hwang S, Noh S, Moon J, Park Y (2018) Distribution patterns of odonate assemblages in relation to environmental variables in streams of South Korea. Insects 9:152.

    Article  PubMed Central  Google Scholar 

  32. Martin R, Maznou X (2016) Dragonflies (Insecta: Odonata) as indicators of habitat quality in Mediterranean streams and rivers in the province of Barcelona (Catalonia, Iberian Peninsula). Int J Odonatol 19:1–18.

    Article  Google Scholar 

  33. Nagy HB, László Z, Szabó F, Szőcs L, Dévai G, Tóthmérész B (2019) Landscape-scale terrestrial factors are also vital in shaping Odonata assemblages of watercourses. Sci Lett 9.

  34. Odum EP (1971) Fundamentals of ecology. W.B. Saunders Co., Philadelphia

  35. Oliveira-Junior JM, Juen L (2019) Structuring of dragonfly communities (Insecta: Odonata) in eastern Amazon: effects of environmental and spatial factors in preserved and altered streams. Insects 10:322.

    Article  PubMed Central  Google Scholar 

  36. Rehfeldt G (1983) Die Libellen (Odonata) des nordlichen Harzrandes. Braunschweiger Naturkundliche Schriften 1:603–654

    Google Scholar 

  37. Roberge J, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18:76–85.

  38. Ružičková H, Halada Ľ, Jedlička L, Kalivodová E (1996) Biotopy Slovenska. Príručka k mapovaniu a katalóg biotopov. ÚKE SAV, Bratislava

  39. Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers Conserv 10:673–690.

    Article  Google Scholar 

  40. Samways MJ (2009) Reconciling ethical and scientific issues for insect conservation. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Blackwell Publishing, Ltd, Germany, pp 547–559

  41. Samways MJ, Simaika JP (2016) Manual of freshwater health: the dragonfly biotic index for South Africa. South African National Biodiversity Institute, Pretoria

  42. Samways MJ, Sharratt NJ (2010) Recovery of endemic dragonflies after removal of invasive alien trees. Conserv Biol 24:267–277

    Article  Google Scholar 

  43. Samways MJ, Steytler SN (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes and recommendations for riparian management. Biol Conserv 78:279–288.

    Article  Google Scholar 

  44. Samways MJ, Taylor S (2004) Impacts of invasive alien plants on red-listed south African dragonflies (Odonata). S Afr J Sci 100:78–80

    Google Scholar 

  45. Seidu I, Nsor CA, Danquah E, Tehoda P, Oppong SK (2019) Patterns of Odonata assemblages in lotic and lentic systems in the Ankasa conservation area. Ghana Int J Zool Article ID 3094787:14 p.

  46. Seldon AL (1969) Equitability indices: dependence on the species count. Ecology 50:466–467.

    Article  Google Scholar 

  47. Simaika JP, Samways MJ (2008) Valuing dragonflies as service providers. In: Córdoba-Aguilar A (ed) Dragonflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 23–55.

  48. Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodivers Conserv 18:1171–1185.

    Article  Google Scholar 

  49. Simaika JP, Samways MJ (2011) Comparative assessment of indices of freshwater habitat conditions using different invertebrate taxon sets. Ecol Indic 11:370–378.

    CAS  Article  Google Scholar 

  50. Simaika JP, Samways MJ (2012) Using dragonflies to monitor and prioritize lotic systems: a south African perspective. Org Divers Evol 12:251–259.

    Article  Google Scholar 

  51. Simaika JP, Samways MJ, Frenzel PP (2016) Artificial ponds increase local dragonfly diversity in a global biodiversity hotspot. Biodivers Conserv 25:1921–1935.

    Article  Google Scholar 

  52. Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodivers Conserv 16:2695–2713.

    Article  Google Scholar 

  53. Solimini AG, Tarallo GA, Carchini G (1997) Life history and species composition of the damselfly assemblage along the urban tract of a river in Central Italy. Hydrobiologia 356(1–3):21–32.

    CAS  Article  Google Scholar 

  54. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358.

    Article  Google Scholar 

  55. Steytler NS, Samways MJ (1995) Biotope selection by adult male dragonflies (Odonata) at an artificial lake created for insect conservation in South Africa. Biol Conserv 72:381–386.

    Article  Google Scholar 

  56. Sushko G (2021) Spatial variation in assemblages of Odonata (Insecta) within habitat gradients in large, pristine peat bogs in Belarus. Biologia 76:575–583.

    Article  Google Scholar 

  57. Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and CanoDraw for windows User's guide: software for canonical community ordination (version 5). Microcomputer Power, Ithaca NY, USA

  58. Thukral AK, Bhardwaj R, Kumar R, Sharma A (2019) New indices regarding the dominance and diversity of communities, derived from sample variance and standard deviation. Heliyon 5:e02606.

  59. Valente-Neto F, de Oliveira RF, Rodrigues ME, Juen L, Swan CM (2016) Toward a practical use of Neotropical odonates as bioindicators: testing congruence across taxonomic resolution and life stages. Ecol Indic 61(2):952–959.

  60. Van Strien AJ, Soldaat LL, Gregory RD (2012) Desirable mathematical properties of indicators for biodiversity change. Ecol Indic 14:202–208.

    Article  Google Scholar 

  61. Vilenica M, Kerovec M, Pozojević I, Mihaljević Z (2021) Odonata assemblages in anthropogenically impacted lotic habitats. J Limnol 80(1).

  62. Vilenica M (2017) Ecological traits of dragonfly (Odonata) assemblages along an oligotrophic Dinaric karst hydrosystem. Ann Limnol – Int J Lim 53:377–389.

    Article  Google Scholar 

  63. Vorstera C, Samwaysa MJ, Simaika JP, Kippingd J, Clausnitzere V, Suhlingf F, Dijkstra KDB (2020) Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol Indic 109:105819–105812.

    Article  Google Scholar 

  64. Washington HG (1984) Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Resour 18:653–694.

    Article  Google Scholar 

  65. Wildermuth H, Martens A (2014) Taschenlexikon der Libellen Europas – Alle Arten von den Azoren bis zum Ural im Portät. Quelle & Meyer Verlag, Wiebelsheim

  66. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338.

    Article  Google Scholar 

Download references


We would like to thank the scientific grant agencies of the Ministry of Education, Science, Research and Sport of the Slovak Republic (VEGA No. 1/0604/20 project and KEGA No. 019UKF-4/2021 project) for supporting this research. Moreover, we grateful to anonymous referees for valuable comments on an earlier version of the manuscript.


The research and this paper was supported by scientific grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA (No. 1/0604/20 project - Environmental assessment of specific habitats of the Danubian Lowland) and KEGA (No. 019UKF-4/2021 project - Creation and innovation of education – Zoology fo Ecologists, part Invertebrates).

Author information



Corresponding author

Correspondence to Kornélia Petrovičová.

Ethics declarations

Ethics approval

Not applicable for the study.

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrovičová, K., Langraf, V., David, S. et al. Distinct Odonata assemblage variations in lentic reservoirs in Slovakia (Central Europe). Biologia (2021).

Download citation


  • Odonata
  • Water ecosystems
  • Multivariate analysis
  • Dragonfly biotic index