The complete mitochondrial genome of an endangered minnow Aphyocypris lini (Cypriniformes: Xenocyprididae): genome characterization and phylogenetic consideration

Abstract

The mitochondrial genome can provide useful information for analyzing phylogeny and molecular evolution. In this study, the mitochondrial genome of Aphyocypris lini, an endangered and endemic minnow from southeast China, was sequenced and compared with other closely related species. The mitogenome of A. lini is 16,613 base pairs in length and consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one displacement loop region. All of PCGs initiate with the standard start codon ATG except cox1 with GTG and most PCGs terminate with TAA or TAG. The genome composition is highly A + T biased (57.3%), and exhibits a positive AT-skew (0.0614) and a negative GC-skew (−0.2205). Based on PCGs, phylogenetic analysis showed that former Ex-Danioninae subfamily was reclassified as Xenocyprididae and divided into two main clades: Opsariichthyinae and Xenocypridinae. Within Xenocypridinae, genus Aphyocypris is not monophyletic but closely related to Yaoshanicus, Nicholsicypris, and Pararasbora genera, suggesting taxonomy should be reconsidered. The present study contributes to understanding the comparative evolution and taxonomy of genus Aphyocypris.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. https://doi.org/10.1093/nar/25.22.4692

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Alves MJ, Coelho H, Collares-Pereira MJ, Coelho MM (2001) Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: importance for conservation. Heredity 87:463–473. https://doi.org/10.1046/j.1365-2540.2001.00929.x

    CAS  Article  PubMed  Google Scholar 

  3. Bachtrog D (2007) Reduced selection for codon usage Bias in Drosophila miranda. J Mol Evol 64:586–590. https://doi.org/10.1007/s00239-006-0257-x

    CAS  Article  PubMed  Google Scholar 

  4. Billington N, Hebert PD (1991) Mitochondrial DNA diversity in fishes and its implications for introductions. Can J Fish Aquat Sci 48:80–94. https://doi.org/10.1139/f91-306

    Article  Google Scholar 

  5. Bozdogan H (1987) Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. https://doi.org/10.1007/BF02294361

    Article  Google Scholar 

  6. Chen Y (1998) China Fauna (Osteichthyes: Cpriniformes II). Science Press, Beijing, pp 171–175

    Google Scholar 

  7. Cooke SJ, Paukert C, Hogan Z (2012) Endangered river fish: factors hindering conservation and restoration. Endanger Species Res 17:179–191. https://doi.org/10.3354/esr00426

    Article  Google Scholar 

  8. Du H, Chen X, Chen B (2003) Comparison and clarification between Nicholsicypris normalis and Yaoshanicus arcus. J South China Norm U 2:96–100 http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNSF200302020.htm

    Google Scholar 

  9. Duchene S, Frey A, Alfaro-Núñez A, Dutton PH, Gilbert MTP, Morin PA (2012) Marine turtle mitogenome phylogenetics and evolution. Mol Phylogenet Evol 65:241–250. https://doi.org/10.1016/j.ympev.2012.06.010

    Article  PubMed  Google Scholar 

  10. Fang F (2003) Phylogenetic analysis of the Asian cyprinid genus Danio (Teleostei, Cyprinidae). Copeia 4:714–728. https://doi.org/10.2307/1448427

    Article  Google Scholar 

  11. Fischer C, Koblmüller S, Gülly C, Schlötterer C, Sturmbauer C, Thallinger GG (2013) Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae) and the blunthead cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS One 8:e67048. https://doi.org/10.1371/journal.pone.0067048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Frazer-Abel AA, Hagerman PJ (2008) Core flexibility of a truncated metazoan mitochondrial tRNA. Nucleic Acids Res 36:5472–5481. https://doi.org/10.1093/nar/gkn529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Froese R, Pauly D (2019) FishBase. World Wide Web electronic publication. www.fishbase.org

  14. Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA ser AGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 28:374–387. https://doi.org/10.1007/BF02603072

    CAS  Article  PubMed  Google Scholar 

  15. George AL, Kuhajda BR, Williams JD, Cantrell MA, Rakes PL, Shute JR (2009) Guidelines for propagation and translocation for freshwater fish conservation. Fisheries 34:529–545. https://doi.org/10.1577/1548-8446-34.11.529

    Article  Google Scholar 

  16. Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184. https://doi.org/10.1093/nar/gkn179

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. He S, Mayden RL, Wang X, Wang W, Tang KL, Chen WJ, Chen Y (2008) Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogen Evol 46:818–829. https://doi.org/10.1016/j.ympev.2007.06.001

    CAS  Article  Google Scholar 

  18. Hu M, Wang Y, Cheung SG, Shin PKS, Xie Y (2009) Threatened fishes of the world: Aphyocypris lini Weitzman and Chan, 1966 (Cyprinidae). Environ Biol Fish 86:525–526. https://doi.org/10.1007/s10641-009-9560-x

    Article  Google Scholar 

  19. Huang SP, Wang FY, Wang TY (2017) Molecular phylogeny of the Opsariichthys group (Teleostei: Cypriniformes) based on complete mitochondrial genomes. Zool Stud 56:e40. https://doi.org/10.6620/ZS.2017.56-40

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y et al (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540. https://doi.org/10.1093/molbev/mst141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang Z, Jiang J, Wang Y, Zhang E, Zhang Y et al (2016) Red list of China’s vertebrates. Biodivers Sci 24:500–551. https://doi.org/10.17520/biods.2016076

    Article  Google Scholar 

  22. Ko AM, Zhang Y, Yang MA, Hu Y, Cao P, Feng X, Zhang L, Wei F, Fu Q (2018) Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage. Curr Biol 28:R693–R694. https://doi.org/10.1016/j.cub.2018.05.008

    CAS  Article  Google Scholar 

  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29(6):1695–1701. https://doi.org/10.1093/molbev/mss020

    CAS  Article  PubMed  Google Scholar 

  25. Letunic I, Bork P (2019) Interactive tree of life (itol) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Liao TY, Ünlü E, Kullander SO (2011a) Western boundary of the subfamily Danioninae in Asia (Teleostei, Cyprinidae): derived from the systematic position of Barilius mesopotamicus based on molecular and morphological data. Zootaxa 2880:31–40. https://doi.org/10.1186/1742-9994-8-12

    Article  Google Scholar 

  27. Liao TY, Ünlü E, Kullander SO, Fang F (2011b) Phylogenetic position of rasborin cyprinids and monophyly of major lineages amongthe Danioninae, based on morphological characters (Cypriniformes: Cyprinidae). J Zool Syst Evol Res 49:224–232. https://doi.org/10.1111/j.1439-0469.2011.00621.x

    Article  Google Scholar 

  28. Liao TY, Kullander SO, Lin HD (2011c) Synonymization of Pararasbora, Yaoshanicus, and Nicholsicypris with Aphyocypris, and description of a new species of Aphyocypris from Taiwan (Teleostei: Cyprinidae). Zool Stud 50:657–664 http://zoolstud.sinica.edu.tw/Journals/50.5/657.html

    Google Scholar 

  29. Liao TY, Kullander SO (2013) Phylogenetic significance of the kinethmoid-associated Y-shaped ligament and long intercostal ligaments in the Cypriniformes (Actinopterygii: Ostariophysi). Zool Scr 42:71–87. https://doi.org/10.1111/j.1463-6409.2012.00565.x

    Article  Google Scholar 

  30. Liaw NHJ, Tsai CL, Watanabe K (2013) Complete mitochondrial genome of the Kikuchi's minnow Aphyocypris kikuchii (Teleostei, Cyprinidae). Mitochondrial DNA 24:11–13. https://doi.org/10.3109/19401736.2012.710227

    CAS  Article  Google Scholar 

  31. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucl Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Luo F, Luo T, Huang J, Liu X, Ling S, Wen Y (2019) Characterization of complete mitochondrial genome of Aphyocypris pulchrilineata (Teleostei, Cypriniformes, Cyprinidae). Mitochondrial DNA B 4:1267–1268. https://doi.org/10.1080/23802359.2019.1591221

    Article  Google Scholar 

  33. Maitland PS (1995) The conservation of freshwater fish: past and present experience. Biol Conserv 72:259–270. https://doi.org/10.1016/0006-3207(94)00088-8

    Article  Google Scholar 

  34. Mayden RL, Tang KT, Wood RM, Chen WJ, Agnew MK et al (2008) Inferring the tree of life of the order Cypriniformes, the earth’s most diverse clade of freshwater fishes: implications of varied taxon and character sampling. J Syst Evol 46:424–438 https://www.jse.ac.cn/EN/10.3724/SP.J.1002.2008.08062

    Google Scholar 

  35. Mayden RL, Chen WJ, Bart HL, Doosey MH, Simons AM et al (2009) Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes-order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogen Evol 51:500–514. https://doi.org/10.1016/j.ympev.2008.12.015

    CAS  Article  Google Scholar 

  36. Nichols JT, Pope CH (1927) The fish of Hainan. Bull Amer Mus Hist 54:376 (http://biostor.org/reference/20650)

    Google Scholar 

  37. Nichols JT (1943) The fresh-water fishes of China. Nat Hist Central Asia 9:85–130. https://doi.org/10.5962/BHL.TITLE.12103

    Article  Google Scholar 

  38. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358. https://doi.org/10.1007/BF00186547

    CAS  Article  PubMed  Google Scholar 

  39. Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  40. Satoh TP, Miya M, Mabuchi K, Nishida N (2016) Structure and variation of the mitochondrial genome of fishes. BMC Genomics 17:719. https://doi.org/10.1186/s12864-016-3054-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Schönhuth S, Vukić J, Šanda R, Yang L, Mayden RL (2018) Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei). Mol Phylogen Evol 127:781–799. https://doi.org/10.1016/j.ympev.2018.06.026

    Article  Google Scholar 

  42. Stout CC, Tan M, Lemmon AR, Lemmon EM, Armbruster JW (2016) Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evol Biol 16:1–13. https://doi.org/10.1186/s12862-016-0819-5

    Article  Google Scholar 

  43. Sitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K et al (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63:826–841. https://doi.org/10.1007/s00239-005-0293-y

    CAS  Article  Google Scholar 

  44. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Tan M, Armbruster JW (2018) Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa 4476:6–39. https://doi.org/10.11646/zootaxa.4476.1.4

    Article  PubMed  Google Scholar 

  46. Tang KL, Agnew MK, Hirt MV, Sado T, Schneider LM et al (2010) Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogen Evol 57:189–214. https://doi.org/10.1016/j.ympev.2010.05.021

    Article  Google Scholar 

  47. Tang B, Liu Y, Xin Z, Zhang D, Wang Z et al (2017) Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other brachyuran crabs. Genomics 110:221–230. https://doi.org/10.1016/j.ygeno.2017.10.001

    CAS  Article  Google Scholar 

  48. Tao W, Mayden RL, He S (2013) Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): a proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses. Mol Phylogen Evol 66:603–616. https://doi.org/10.1016/j.ympev.2012.09.024

    Article  Google Scholar 

  49. Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53:394–412. https://doi.org/10.1111/j.1095-8649.1998.tb01039.x

    Article  Google Scholar 

  50. Wang X, Li J, He S (2007) Molecular evidence for the monophyly of east Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogen Evol 42:157–170. https://doi.org/10.1016/j.ympev.2006.06.014

    CAS  Article  Google Scholar 

  51. Wang Y, Shen Y, Feng C, Zhao K, Song Z, Zhang Y, Yang L, He S (2016) Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep 6:29690. https://doi.org/10.1038/srep29690

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Watanabe YL, Suematsu T, Ohtsuki T (2014) Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front Genet 5:109. https://doi.org/10.3389/fgene.2014.00109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Weitzman SH, Chan LL (1966) Identification and relationships of Tanichthys albonubes and Aphyocypris pooni, two cyprinid fishes from South China and Hong Kong. Copeia 2:285–296. https://doi.org/10.2307/1441136

    Article  Google Scholar 

  54. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Yu P, Zhou L, Zhou XY, Yang WT, Zhang J (2019) Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes. Int J Biol Macromol 129:339–350. https://doi.org/10.1016/j.ijbiomac.2019.01.200

    CAS  Article  PubMed  Google Scholar 

  56. Yue P, Chen Y (1998) Pisces. In: Wang S (ed) China red data book of endangered animals. Science Press, Beijing, pp 71–73

    Google Scholar 

  57. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20(1):348–355. https://doi.org/10.1111/1755-0998.13096

    Article  PubMed  Google Scholar 

  58. Zhang F, Shen Y (2019) Characterization of the complete mitochondrial genome of Rhinogobius leavelli (Perciformes: Gobiidae: Gobionellinae) and its phylogenetic analysis for Gobionellinae. Biologia 74:493–499. https://doi.org/10.2478/s11756-018-00189-5

    Article  Google Scholar 

  59. Zhu X, Guo Y, Ma G, Long J (2015) A review of research progress on the genus Aphyocypris. J Kaili U 33:84–87. https://doi.org/10.3969/j.issn.1673-9329.2015.03.25

    Article  Google Scholar 

  60. Zhu Y, Zhao Y, Huang K (2013) Aphyocypris pulchrilineata, a new miniature cyprinid species (Teleostei: Cypriniformes: Cyprinidae) from Guangxi, China. Ichthyol Res 60:232–236. https://doi.org/10.1007/s10228-013-0338-y

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the journal editors and two anonymous reviewers for their constructive comments and suggestions on the manuscript. This research was supported by Fujian Middle-aged and Young Teacher Education Research Project (Grant No. JAT200445), the Science and Technology Program of Fuzhou, China (Grant No. 2019-S-64), and Fujian Fishery Structural Adjustment Special Fund subsidy Project (Grant No. 2020yyjg34).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuying Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 486 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, S., Zhang, J. et al. The complete mitochondrial genome of an endangered minnow Aphyocypris lini (Cypriniformes: Xenocyprididae): genome characterization and phylogenetic consideration. Biologia (2021). https://doi.org/10.1007/s11756-021-00811-z

Download citation

Keywords

  • Mitogenome
  • Aphyocypris lini
  • Garnet minnow
  • Phylogenetic relationship
  • Xenocypridinae