Skip to main content

Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints

Abstract

This paper tackles management zone delineation and crop planning problems in an integrated precision agriculture framework. The zoning problem defines relatively homogeneous management zones regarding their soil properties, and for which specific rates of agricultural inputs are necessary. From a sustainable point of view, the crop planning problem considers cropping of species from different botanic families in adjacent zones at the same time. With this in mind, we propose a novel linear binary integer program for an integrated zoning and crop planning problem with adjacency constraints. In this model, we maximize the incomes of the crop plan subject to zoning constraints and adjacency constraints on crop families. The proposed model has a column-based formulation, and as such, we develop a decomposition-based heuristic which make use of the column generation method with column-dependent rows. The decomposition strategy involves a master problem that deals with ensuring homogeneity of the selected management zones within the field partition and ensuring that the crop plan meets adjacency policies. On the other hand, the pricing problem generates rectangular management zones whose incorporation improves the objective value of the master problem. The algorithm is implemented in JuMP, a modeling language for mathematical optimization embedded in Julia. Results from a set of instances show the relevance of the decomposition-based heuristic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adeyemo J, Otieno F (2010) Differential evolution algorithm for solving multi-objective crop planning model. Agric Water Manag 97(6):848–856. https://doi.org/10.1016/j.agwat.2010.01.013

    Article  Google Scholar 

  2. Ahumada O, Villalobos JR (2009) Application of planning models in the agri-food supply chain: a review. Eur J Oper Res 196(1):1–20. https://doi.org/10.1016/j.ejor.2008.02.014

    Article  Google Scholar 

  3. Albornoz VM, Ñanco LJ (2016) An empirical design of a column generation algorithm applied to a management zone delineation problem. Lecture notes in economics and mathematical systems. Springer International Publishing, Berlin, pp 201–208

    Google Scholar 

  4. Albornoz VM, Cid-García NM, Ortega R, Ríos-Solís YA (2015) A hierarchical planning scheme based on precision agriculture. In: Plá-Aragonés LM (ed) Handbook of operational research in agriculture and the agri-food Industry. Springer, Berlin, pp 129–162

    Chapter  Google Scholar 

  5. Albornoz VM, Ñanco LJ, Sáez JL (2019) Delineating robust rectangular management zones based on column generation algorithm. Comput Electron Agric 161:194–201. https://doi.org/10.1016/j.compag.2019.01.045

    Article  Google Scholar 

  6. Albornoz VM, Véliz MI, Ortega R, Ortíz-Araya V (2020) Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Ann Oper Res 286:617–634. https://doi.org/10.1007/s10479-019-03198-y

    Article  Google Scholar 

  7. Alfandari L, Plateau A, Schepler X (2015) A branch-and-price-and-cut approach for sustainable crop rotation planning. Eur J Oper Res 241(3):872–879. https://doi.org/10.1016/j.ejor.2014.09.066

    Article  Google Scholar 

  8. Archetti C, Speranza MG (2014) A survey on matheuristics for routing problems. EURO J Comput Optim 2(4):223–246. https://doi.org/10.1007/s13675-014-0030-7

    Article  Google Scholar 

  9. Betzek NM, de Souza EG, Bazzi CL, Schenatto K, Gavioli A (2018) Rectification methods for optimization of management zones. Comput Electron Agric 146:1–11. https://doi.org/10.1016/j.compag.2018.01.014

    Article  Google Scholar 

  10. Bhatti A, Mulla D, Frazier B (1991) Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sens Environ 37(3):181–191. https://doi.org/10.1016/0034-4257(91)90080-p

    Article  Google Scholar 

  11. Boyabatli O, Nasiry J, Zhou YH (2019) Crop planning in sustainable agriculture: dynamic farmland allocation in the presence of crop rotation benefits. Manag Sci. https://doi.org/10.1287/mnsc.2018.3044

    Article  Google Scholar 

  12. Carr PM, Carlson GR, Jacobsen JS, Nielsen GA, Skogley EO (1991) Farming soils, not fields: a strategy for increasing fertilizer profitability. JPA 4(1):57. https://doi.org/10.2134/jpa1991.0057

    Article  Google Scholar 

  13. Castro PM, Grossmann IE, Rousseau LM (2010) Decomposition techniques for hybrid MILP/CP models applied to scheduling and routing problems. Hybrid optimization. Springer, New York, pp 135–167

    Google Scholar 

  14. Cid-García NM, Ibarra-Rojas OJ (2019) An integrated approach for the rectangular delineation of management zones and the crop planning problems. Comput Electron Agric. https://doi.org/10.1016/j.compag.2019.104925

    Article  Google Scholar 

  15. Cid-García NM, Albornoz V, Rios-Solis YA, Ortega R (2013) Rectangular shape management zone delineation using integer linear programming. Comput Electron Agric 93:1–9. https://doi.org/10.1016/j.compag.2013.01.009

    Article  Google Scholar 

  16. Córdoba MA, Bruno CI, Costa JL, Peralta NR, Balzarini MG (2016) Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst Eng 143:95–107. https://doi.org/10.1016/j.biosystemseng.2015.12.008

    Article  Google Scholar 

  17. Costa AM, Santos LMR, Alem DJ, Santos RHS (2014) Sustainable vegetable crop supply problem with perishable stocks. Ann Oper Res. https://doi.org/10.1007/s10479-010-0830-y

    Article  Google Scholar 

  18. Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing. Transp Sci 53(4):946–985. https://doi.org/10.1287/trsc.2018.0878

    Article  Google Scholar 

  19. Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. OperRes 8(1):101–111. https://doi.org/10.1287/opre.8.1.101

    Article  Google Scholar 

  20. Desaulniers G, Desrosiers J, Solomon M (2005) Column generation. Springer, US. https://doi.org/10.1007/b135457

  21. Deytieux V, Munier-Jolain N, Caneill J (2016) Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. Eur J Agron 72:107–126. https://doi.org/10.1016/j.eja.2015.10.005

    Article  Google Scholar 

  22. Diker K, Heermann D, Brodahl M (2004) Frequency analysis of yield for delineating yield response zones. Precis Agric 5(5):435–444. https://doi.org/10.1007/s11119-004-5318-9

    Article  Google Scholar 

  23. Filippi C, Mansini R, Stevanato E (2017) Mixed integer linear programming models for optimal crop selection. Comput Oper Res 81:26–39. https://doi.org/10.1016/j.cor.2016.12.004

    Article  Google Scholar 

  24. Fraisse CW, Sudduth KA, Kitchen NR (2001) Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Trans ASAE 44(1):155–166. https://doi.org/10.13031/2013.2296

    Article  Google Scholar 

  25. Franzen D, Nanna T (2002) Management zone delineation methods. In: Robert P (ed) Proceedings of the 6th International Conference on Precision Agriculture and Other Precision Resources Management, American Society of Agronomy, Minneapolis, USA, pp 443–457

  26. Gendron B, Larose M (2014) Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-charge network design. EURO J Comput Optim 2(1–2):55–75. https://doi.org/10.1007/s13675-014-0020-9

    Article  Google Scholar 

  27. Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Oper Res 9(6):849–859. https://doi.org/10.1287/opre.9.6.849

    Article  Google Scholar 

  28. Haghverdi A, Leib BG, Washington-Allen RA, Ayers PD, Buschermohle MJ (2015) Perspectives on delineating management zones for variable rate irrigation. Comput Electron Agric 117:154–167. https://doi.org/10.1016/j.compag.2015.06.019

    Article  Google Scholar 

  29. Higgins AJ, Miller CJ, Archer AA, Ton T, Fletcher CS, McAllister RRJ (2010) Challenges of operations research practice in agricultural value chains. J Oper Res Soc 61(6):964–973. https://doi.org/10.1057/jors.2009.57

    Article  Google Scholar 

  30. Hornung A, Khosla R, Reich R, Inman D, Westfall DG (2006) Comparison of site-specific management zones. Agron J 98(2):407. https://doi.org/10.2134/agronj2005.0240

    Article  Google Scholar 

  31. Jiang Q, Fu Q, Wang Z (2011) Study on delineation of irrigation management zones based on management zone analyst software. Computer and computing technologies in agriculture IV. Springer, Berlin Heidelberg, pp 419–427

    Chapter  Google Scholar 

  32. Johnson CK, Mortensen DA, Wienhold BJ, Shanahan JF, Doran JW (2003) Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agron J 95(2):303. https://doi.org/10.2134/agronj2003.0303

    Article  Google Scholar 

  33. Kountios G, Ragkos A, Bournaris T, Papadavid G, Michailidis A (2017) Educational needs and perceptions of the sustainability of precision agriculture: survey evidence from Greece. Precis Agric 19(3):537–554. https://doi.org/10.1007/s11119-017-9537-2

    Article  Google Scholar 

  34. Kumar R, Pathak SK (1989) Optimal crop planning for a region in India by conjunctive use of surface and groundwater. Int J Water Resour Dev 5(2):99–105. https://doi.org/10.1080/07900628908722420

    Article  Google Scholar 

  35. Leroux C, Jones H, Clenet A, Tisseyre B (2017) A new approach for zoning irregularly-spaced, within-field data. Comput Electron Agric 141:196–206. https://doi.org/10.1016/j.compag.2017.07.025

    Article  Google Scholar 

  36. Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023. https://doi.org/10.1287/opre.1050.0234

    Article  Google Scholar 

  37. Maher SJ (2016) Solving the integrated airline recovery problem using column-and-row generation. Transp Sci 50(1):216–239. https://doi.org/10.1287/trsc.2014.0552

    Article  Google Scholar 

  38. Mainuddin M, Gupta AD, Onta PR (1997) Optimal crop planning model for an existing groundwater irrigation project in Thailand. Agric Water Manag 33(1):43–62. https://doi.org/10.1016/s0378-3774(96)01278-4

    Article  Google Scholar 

  39. McCarl BA, Candler WV, Doster DH, Robbins PR (1977) Experiences with farmer oriented linear programming for crop planning. Can J Agric Econ 25(1):17–30. https://doi.org/10.1111/j.1744-7976.1977.tb02862.x

    Article  Google Scholar 

  40. Muter I, Sezer Z (2018) Algorithms for the one-dimensional two-stage cutting stock problem. Eur J Oper Res 271(1):20–32. https://doi.org/10.1016/j.ejor.2018.04.042

    Article  Google Scholar 

  41. Muter I, Birbil S, Bülbül K (2013) Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows. Math Program 142(1–2):47–82. https://doi.org/10.1007/s10107-012-0561-8

    Article  Google Scholar 

  42. Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM (2017) Delineation of soil management zones for variable-rate fertilization. In: Advances in agronomy, Elsevier, pp 175–245, https://doi.org/10.1016/bs.agron.2017.01.003

  43. Nemhauser GL (2012) Column generation for linear and integer programming. In: Documenta Mathematica, vol Extra ISMP, pp 65–73

  44. Oppen J, Løkketangen A, Desrosiers J (2010) Solving a rich vehicle routing and inventory problem using column generation. Comput Oper Res 37(7):1308–1317. https://doi.org/10.1016/j.cor.2009.09.014

    Article  Google Scholar 

  45. Ortega RA, Santibáñez OA (2007) Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput Electron Agric 58(1):49–59. https://doi.org/10.1016/j.compag.2006.12.011

    Article  Google Scholar 

  46. Pedroso M, Taylor J, Tisseyre B, Charnomordic B, Guillaume S (2010) A segmentation algorithm for the delineation of agricultural management zones. Comput Electron Agric 70(1):199–208. https://doi.org/10.1016/j.compag.2009.10.007

    Article  Google Scholar 

  47. Peralta NR, Costa JL, Balzarini M, Franco MC, Córdoba M, Bullock D (2015) Delineation of management zones to improve nitrogen management of wheat. Comput Electron Agric 110:103–113. https://doi.org/10.1016/j.compag.2014.10.017

    Article  Google Scholar 

  48. Pla LM, Sandars DL, Higgins AJ (2014) A perspective on operational research prospects for agriculture. J Oper Res Soc 65(7):1078–1089. https://doi.org/10.1057/jors.2013.45

    Article  Google Scholar 

  49. Raidl GR (2015) Decomposition based hybrid metaheuristics. Eur J Oper Res 244(1):66–76. https://doi.org/10.1016/j.ejor.2014.12.005

    Article  Google Scholar 

  50. Roudier P, Tisseyre B, Poilvé H, Roger JM (2008) Management zone delineation using a modified watershed algorithm. Precis Agric 9(5):233–250. https://doi.org/10.1007/s11119-008-9067-z

    Article  Google Scholar 

  51. Santos LMR, Costa AM, Arenales MN, Santos RHS (2010) Sustainable vegetable crop supply problem. Eur J Oper Res 204(3):639–647. https://doi.org/10.1016/j.ejor.2009.11.026

    Article  Google Scholar 

  52. Santos LMR, Michelon P, Arenales MN, Santos RHS (2011) Crop rotation scheduling with adjacency constraints. Ann Oper Res 190(1):165–180. https://doi.org/10.1007/s10479-008-0478-z

    Article  Google Scholar 

  53. Santos LMR, Munari P, Costa AM, Santos RHS (2015) A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. Eur J Oper Res 245(2):581–590. https://doi.org/10.1016/j.ejor.2015.03.035

    Article  Google Scholar 

  54. Sarker R, Ray T (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Comput Electron Agric 68(2):191–199. https://doi.org/10.1016/j.compag.2009.06.002

    Article  Google Scholar 

  55. Schepers AR, Shanahan JF, Liebig MA, Schepers JS, Johnson SH, Luchiari A (2004) Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron J 96(1):195. https://doi.org/10.2134/agronj2004.0195

    Article  Google Scholar 

  56. Sigurd M, Pisinger D, Sig M (2004) Scheduling transportation of live animals to avoid the spread of diseases. Transp Sci 38(2):197–209. https://doi.org/10.1287/trsc.1030.0053

    Article  Google Scholar 

  57. Silva EF, Wood RK (2006) Solving a class of stochastic mixed-integer programs with branch and price. Math Program 108(2–3):395–418. https://doi.org/10.1007/s10107-006-0716-6

    Article  Google Scholar 

  58. Soto-Silva WE, Nadal-Roig E, González-Araya MC, Pla-Aragones LM (2016) Operational research models applied to the fresh fruit supply chain. Eur J Oper Res 251(2):345–355. https://doi.org/10.1016/j.ejor.2015.08.046

    Article  Google Scholar 

  59. Suyabatmaz AC, Sahin G (2015) Railway crew capacity planning problem with connectivity of schedules. Transp Res Part E: Logist Transp Rev 84:88–100. https://doi.org/10.1016/j.tre.2015.10.003

    Article  Google Scholar 

  60. Uccar E, Birbil S, Muter I (2017) Managing disruptions in the multi-depot vehicle scheduling problem. Transp Res Part B: Methodol 105:249–269. https://doi.org/10.1016/j.trb.2017.09.002

    Article  Google Scholar 

  61. Wolfert S, Ge L, Verdouw C, Bogaardt MJ (2017) Big data in smart farming — a review. Agric Syst 153:69–80. https://doi.org/10.1016/j.agsy.2017.01.023

    Article  Google Scholar 

  62. You PS, Hsieh YC (2017) A computational approach for crop production of organic vegetables. Comput Electron Agric 134:33–42. https://doi.org/10.1016/j.compag.2016.11.003

    Article  Google Scholar 

  63. Zane L, Tisseyre B, Guillaume S, Charnomordic B (2013) Within-field zoning using a region growing algorithm guided by geostatistical analysis. Proc Eur Conf Precis Agric ECPA 2013:313–319

    Google Scholar 

  64. Zhang X, Jiang L, Qiu X, Qiu J, Wang J, Zhu Y (2016) An improved method of delineating rectangular management zones using a semivariogram-based technique. Comput Electron Agric 121:74–83. https://doi.org/10.1016/j.compag.2015.11.016

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Dirección General de Investigación, Innovación y Emprendimiento (Grant PIM 172) and by Dirección de Postgrado y Programas (Beca Magíster USM), both from Universidad Técnica Federico Santa María.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Albornoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albornoz, V.M., Zamora, G.E. Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints. TOP 29, 248–265 (2021). https://doi.org/10.1007/s11750-020-00580-z

Download citation

Keywords

  • Binary integer programming
  • Column generation
  • Column-dependent rows
  • Management zones
  • Crop planning

Mathematics Subject Classification

  • 90C10
  • 90C90
  • 90B50
  • 49M27