Advertisement

TOP

, Volume 26, Issue 2, pp 283–308 | Cite as

A biased random-key genetic algorithm for the project scheduling problem with flexible resources

  • Bernardo F. Almeida
  • Isabel Correia
  • Francisco Saldanha-da-Gama
Original Paper
  • 76 Downloads

Abstract

In this paper, we investigate a resource-constrained project scheduling problem with flexible resources. This is an \(\mathcal {NP}\)-hard combinatorial optimization problem that consists of scheduling a set of activities requiring specific resource units of several skills. The goal is to minimize the makespan of the project. We propose a biased random-key genetic algorithm for computing feasible solutions for the referred problem. We study different decoding mechanisms: an already existing method in the literature, a new adapted serial scheduling generation scheme, and a combination of both. The new procedure is tested using a set of benchmark instances of the problem. The results provide strong evidence that the new heuristic is robust and yields high-quality feasible solutions.

Keywords

Resource-constrained project scheduling Flexible resources Biased random-key genetic algorithm 

Mathematics Subject Classification

90B35 (Scheduling theory, deterministic) 90C59 (Approximation methods and heuristics) 

Notes

Acknowledgements

This work was supported by National Funding from FCT—Fundação para a Ciência e a Tecnologia, under the projects Fundação para a Ciência e a Tecnologia, UID/MAT/04561/2013 (CMAF-CIO/FCUL) and UID/MAT/00297/2013 (CMA/FCT/UNL). The authors wish to thank the three anonymous referees for the valuable comments and suggestions provided which helped improving the manuscript.

References

  1. Alcaraz J, Maroto C (2001) A robust genetic algorithm for resource allocation in project scheduling. Ann Oper Res 102(1):83–109CrossRefGoogle Scholar
  2. Alcaraz J, Maroto C (2006) A hybrid genetic algorithm based on intelligent encoding for project scheduling. In: Józefowska J, Węglarz J (eds) Perspectives in modern project scheduling, pp 249–274Google Scholar
  3. Almeida BF, Correia I, Saldanha-da-Gama F (2015) An instance generator for the multi-skill resource-constrained project scheduling problem. Technical report, Faculdade de Ciências da Universidade de Lisboa—Centro de Matemática, Aplicações Fundamentais e Investigação Operacional. Available at https://ciencias.ulisboa.pt/sites/default/files/fcul/unidinvestig/cmaf-cio/SGama.pdf
  4. Almeida BF, Correia I, Saldanha-da-Gama F (2016) Priority-based heuristics for the multi-skill resource constrained project scheduling problem. Expert Syst Appl 57:91–103CrossRefGoogle Scholar
  5. Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112(1):3–41CrossRefGoogle Scholar
  6. Correia I, Lourenço LL, Saldanha-da-Gama F (2012) Project scheduling with flexible resources: formulation and inequalities. OR Spectrum 34:635–663CrossRefGoogle Scholar
  7. Correia I, Saldanha-da-Gama F (2014) The impact of fixed and variable costs in a multi-skill project scheduling problem: an empirical study. Comput Ind Eng 72:230–238CrossRefGoogle Scholar
  8. Correia I, Saldanha-da-Gama F (2015) A modeling framework for project staffing and scheduling problems. In: Schwindt C, Zimmermann J (eds) Handbook on project management and scheduling, vol 1. Springer, Berlin, pp 547–564Google Scholar
  9. Demeulemeester EL, Herroelen W (2002) Project scheduling: a research handbook. Springer, BerlinGoogle Scholar
  10. Gonçalves JF, Mendes JJ, Resende MG (2008) A genetic algorithm for the resource constrained multi-project scheduling problem. Eur J Oper Res 189(3):1171–1190CrossRefGoogle Scholar
  11. Gonçalves JF, Resende MG (2011) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 17:487–525CrossRefGoogle Scholar
  12. Gonçalves JF, Resende MG (2013) A biased random key genetic algorithm for 2D and 3D bin packing problems. Int J Prod Econ 145(2):500–510CrossRefGoogle Scholar
  13. Gonçalves JF, Resende MG (2015) A biased random-key genetic algorithm for the unequal area facility layout problem. Eur J Oper Res 246(1):86–107CrossRefGoogle Scholar
  14. Gonçalves JF, Resende MG, Mendes JJ (2011) A biased random-key genetic algorithm with forward–backward improvement for the resource constrained project scheduling problem. J Heuristics 17(5):467–486CrossRefGoogle Scholar
  15. Gutjahr WJ, Katzensteiner S, Reiter P, Stummer C, Denk M (2008) Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16:281–306CrossRefGoogle Scholar
  16. Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Res Log (NRL) 49(5):433–448CrossRefGoogle Scholar
  17. Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207(1):1–14CrossRefGoogle Scholar
  18. Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur J Oper Res 127:394–407CrossRefGoogle Scholar
  19. Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled workforce. OR Spectrum 32:343–368CrossRefGoogle Scholar
  20. Herroelen WS, Demeulemeester EL (1998) Resource-constrained project scheduling: a survey of recent developments. Comput Oper Res 25:279–302CrossRefGoogle Scholar
  21. Klein R (2000) Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects. Eur J Oper Res 127:619–638CrossRefGoogle Scholar
  22. Kolisch R (1996a) Efficient priority rules for the resource-constrained project scheduling problem. J Oper Manag 14:179–192CrossRefGoogle Scholar
  23. Kolisch R (1996b) Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur J Oper Res 90(2):320–333CrossRefGoogle Scholar
  24. Kolisch R, Hartmann S (1999) Heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz J (ed) Project scheduling: recent models, algorithms and applications. Springer, Boston, pp 147–178CrossRefGoogle Scholar
  25. Kolisch R, Hartmann S (2006) Experimental evaluation of heuristics for the resource-constrained project scheduling problem: an update. Eur J Oper Res 174:23–37CrossRefGoogle Scholar
  26. Li H, Womer K (2009) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J Sched 12:281–298CrossRefGoogle Scholar
  27. Li K, Willis R (1992) An alternative scheduling technique for resource constrained project scheduling. Eur J Oper Res 56:370–379CrossRefGoogle Scholar
  28. Mendes JJ, Gonçalves JF, Resende MG (2009) A random key based genetic algorithm for the resource constrained project scheduling problem. Comput Oper Res 36(1):92–109CrossRefGoogle Scholar
  29. Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manag Sci 44(5):714–729CrossRefGoogle Scholar
  30. Özdamar L (1999) A genetic algorithm approach to a general category project scheduling problem. IEEE Trans Syst Man Cybern 29:44–69CrossRefGoogle Scholar
  31. Ruiz E, Albareda-Sambola M, Fernández E, Resende MG (2015) A biased random-key genetic algorithm for the capacitated minimum spanning tree problem. Comput Oper Res 57(C):95–108CrossRefGoogle Scholar
  32. Walter M, Zimmermann J (2016) Minimizing average project team size given multi-skilled workers with heterogeneous skill levels. Comput Oper Res 70(C):163–179CrossRefGoogle Scholar
  33. Węglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite number of activity processing modes—a survey. Eur J Oper Res 208:177–205CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2018

Authors and Affiliations

  • Bernardo F. Almeida
    • 1
  • Isabel Correia
    • 2
  • Francisco Saldanha-da-Gama
    • 1
  1. 1.Departamento de Estatística e Investigação Operacional/Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Departamento de Matemática/Centro de Matemática e Aplicações, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations