Skip to main content

Best proximity points of non-self mappings

Abstract

Let A,B be nonempty subsets of a Banach space X and let T:AB be a non-self mapping. Under appropriate conditions, we study the existence of solutions for the minimization problem min xA xTx∥.

This is a preview of subscription content, access via your institution.

References

  • Abkar A, Gabeleh M (2010) Results on the existence and convergence of best proximity points. Fixed Point Theory Appl 386037:1–10

    Google Scholar 

  • Abkar A, Gabeleh M (2011a) Best proximity points for cyclic mappings in ordered metric spaces. J Optim Theory Appl 150:188–193. doi:10.1007/s10957-011-9810-x

    Article  Google Scholar 

  • Abkar A, Gabeleh M (2011b) Global optimal solutions of noncyclic mappings in metric spaces. J Optim Theory Appl. doi:10.1007/s10957-011-9966-4. In Press

  • Al-Thagafi MA, Shahzad Naseer (2009) Convergence and existence results for best proximity points. Nonlinear Anal 70:3665–3671

    Article  Google Scholar 

  • Cho YJ, Petrot N (2010) An optimization problem related to generalized equilibrium and fixed point problems with applications. Fixed Point Theory 11:237–250

    Google Scholar 

  • Cho YJ, Kang SM, Zhou H (2008) Approximate proximal point algorithms for finding zeroes of maximal monotone operators in Hilbert spaces. J Inequal Appl 2008:598191. doi:10.1155/2008/598191. 10 pp

    Google Scholar 

  • Cho YJ, Hussain N, Pathak HK (2011) Approximation of nearest common fixed points of asymptotically I-nonexpansive mappings in Banach spaces. Commun Korean Math Soc 26:483–498

    Article  Google Scholar 

  • Derafshpour M, Rezapour Sh, Shahzad N (2011) Best proximity points of cyclic φ-contractions in ordered metric spaces. Topol Methods Nonlinear Anal 37:193–202

    Google Scholar 

  • Di Bari C, Suzuki T, Vetro C (2008) Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal 69:3790–3794

    Article  Google Scholar 

  • Eldred A, Veeramani P (2006) Existence and convergence of best proximity points. J Math Anal Appl 323:1001–1006

    Article  Google Scholar 

  • Fan K (1969) Extensions of two fixed point theorems of FE Browder. Math Z 122:234–240

    Article  Google Scholar 

  • Qin X, Kang SM, Cho YJ (2010) Approximating zeros of monotone operators by proximal point algorithms. J Glob Optim 46:75–87

    Article  Google Scholar 

  • Sadiq Basha S (2011a) Common best proximity points: global minimal solutions. Top. doi:10.1007/s11750-011-0171-2

    Google Scholar 

  • Sadiq Basha S (2011b) Best proximity points: global optimal approximate solutions. J Glob Optim. doi:10.1007/s10898-009-9521-0

    Google Scholar 

  • Sankar Raj V (2011) A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal 74:4804–4808

    Article  Google Scholar 

  • Suzuki T, Kikkawa M, Vetro C (2009) The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal 71:2918–2926

    Article  Google Scholar 

  • Wang SZ, Li BY, Gao ZM (1982) Some fixed point theorems on expansion mappings. Adv Math (China) 11(2):149–153

    Google Scholar 

  • Wlodarczyk K, Plebaniak R, Obczynski C (2010) Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal 72:794–805

    Article  Google Scholar 

  • Yao Y, Cho YJ, Liou Y (2011a) Iterative algorithms for variational inclusions, mixed equilibrium problems and fixed point problems approach to optimization problems. Cent Eur J Math 9:640–656

    Article  Google Scholar 

  • Yao Y, Cho YJ, Liou Y (2011b) Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur J Oper Res 212:242–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Gabeleh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abkar, A., Gabeleh, M. Best proximity points of non-self mappings. TOP 21, 287–295 (2013). https://doi.org/10.1007/s11750-012-0255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-012-0255-7

Keywords

  • Contraction mapping
  • Nonexpansive mapping
  • Best proximity point
  • Fixed point

Mathematics Subject Classification

  • 47H10
  • 47H09