, Volume 20, Issue 2, pp 517–533 | Cite as

Initial conditions estimation for improving forecast accuracy in exponential smoothing

  • E. Vercher
  • A. Corberán-Vallet
  • J. V. Segura
  • J. D. Bermúdez
Original Paper


In this paper we analyze the importance of initial conditions in exponential smoothing models on forecast errors and prediction intervals. We work with certain exponential smoothing models, namely Holt’s additive linear and Gardner’s damped trend. We study some probability properties of those models, showing the influence of the initial conditions on the forecast, which highlights the importance of obtaining accurate estimates of initial conditions. Using the linear heteroscedastic modeling approach, we show how to obtain the joint estimation of initial conditions and smoothing parameters through maximum likelihood via box-constrained nonlinear optimization. Point-wise forecasts of future values and prediction intervals are computed under normality assumptions on the stochastic component. We also propose an alternative formulation of prediction intervals in order to obtain an empirical coverage closer to their nominal values; that formulation adds an additional term to the standard formulas for the estimation of the error variance. We illustrate the proposed approach by using the yearly data time-series from the M3-Competition.


Exponential smoothing Demand forecasting Damped trend models Prediction intervals M3-Competition 

Mathematics Subject Classification (2000)

62M20 62P30 90C30 90B50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold JRT, Chapman SN, Clive LM (2008) Introduction to materials management, 6th edn. Pearson Prentice Hall, Upper Saddle River Google Scholar
  2. Bermúdez JD, Segura JV, Vercher E (2006a) Improving demand forecasting accuracy using non-linear programming software. J Oper Res Soc 57:94–100 CrossRefGoogle Scholar
  3. Bermúdez JD, Segura JV, Vercher E (2006b) A decision support system methodology for forecasting of time series based on soft computing. Comput Stat Data Anal 51:177–191 CrossRefGoogle Scholar
  4. Bermúdez JD, Segura JV, Vercher E (2007) Holt–Winters forecasting: an alternative formulation applied to UK air passenger data. J Appl Stat 34:1075–1090 CrossRefGoogle Scholar
  5. Bermúdez JD, Segura JV, Vercher E (2008) SIOPRED: a prediction and optimisation integrated system for demand. Top 16:258–271 CrossRefGoogle Scholar
  6. Bermúdez JD, Segura JV, Vercher E (2010) Bayesian forecasting with the Holt–Winters modes. J Oper Res Soc 61:164–171 CrossRefGoogle Scholar
  7. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208 CrossRefGoogle Scholar
  8. Corberán-Vallet A, Bermúdez JD, Vercher E (2011) Forecasting correlated time series with exponential smoothing models. Int J Forecast 27:252–265 CrossRefGoogle Scholar
  9. Fildes R, Kingsman B (2011) Incorporating demand uncertainty and forecast error in supply chain planning models. J Oper Res Soc 62:483–500 CrossRefGoogle Scholar
  10. Fildes R, Nikolopoulos K, Crone SF, Syntetos AA (2008) Forecasting and operational research: a review. J Oper Res Soc 59:1150–1172 CrossRefGoogle Scholar
  11. Gardner ES Jr (2006) Exponential smoothing: the state of the art—part II. Int J Forecast 22:637–666 CrossRefGoogle Scholar
  12. Gardner ESJr, McKenzie E (1985) Forecasting trends in time series. Manag Sci 31:1237–1246 CrossRefGoogle Scholar
  13. Harvey A (1989) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge Google Scholar
  14. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688 CrossRefGoogle Scholar
  15. Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2005) Prediction intervals for exponential smoothing using two new classes of state space models. J Forecast 24:17–37 CrossRefGoogle Scholar
  16. Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing. The state space approach. Springer, Berlin CrossRefGoogle Scholar
  17. Hyndman RJ, Koehler AB, Snyder RD, Grose S (2002) A state space framework for automatic forecasting using exponential smoothing methods. Int J Forecast 28:439–454 CrossRefGoogle Scholar
  18. McKenzie E, Gardner ES Jr (2010) Damped trend exponential smoothing:a modelling viewpoint. Int J Forecast 26:661–665 CrossRefGoogle Scholar
  19. Makridakis S, Hibon M (1991) Exponential smoothing: The effect of initial values and loss functions on post-sample accuracy. Int J Forecast 7:317–330 CrossRefGoogle Scholar
  20. Makridakis S, Hibon M (2000) The M3-competition: results, conclusions and implications. Int J Forecast 16:451–476 CrossRefGoogle Scholar
  21. Ord JK, Koehler AB, Snyder RD (1997) Estimation and prediction for a class of dynamic nonlinear statistical models. J Am Stat Assoc 92:1621–1629 Google Scholar
  22. Segura JV, Vercher E (2001) A spreadsheet modeling approach to the Holt–Winters optimal forecasting. Eur J Oper Res 178:154–167 Google Scholar
  23. Syntetos AA, Boylan JE, Disney SM (2009) Forecasting for inventory planning: a 50-year review. J Oper Res Soc 60:S150–S160 CrossRefGoogle Scholar
  24. Taylor JW (2003) Exponential smoothing with a damped multiplicative trend. Int J Forecast 19:715–725 CrossRefGoogle Scholar
  25. Tratar LF (2010) Joint optimisation of demand forecasting and stock control parameters. Int J Prod Econ 127:173–179 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  • E. Vercher
    • 1
  • A. Corberán-Vallet
    • 2
  • J. V. Segura
    • 3
  • J. D. Bermúdez
    • 1
  1. 1.Dpto. Estadística e Investigación OperativaUniversitat de ValènciaBurjassotSpain
  2. 2.Div. of Biostatistics and EpidemiologyMedical University of South CarolinaCharlestonUSA
  3. 3.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations