TOP

, Volume 16, Issue 2, pp 319–344 | Cite as

A new pricing scheme based on DEA for iterative multi-unit combinatorial auctions

  • Juan Aparicio
  • Mercedes Landete
  • Juan Francisco Monge
  • Inmaculada Sirvent
Original Paper

Abstract

Iterative Multi-unit Combinatorial Auctions are auctions in which: bidders can express bids in successive rounds until a stopping rule is held; there are multiple units of each item; and bids are bundles of items. Data Envelopment Analysis (DEA) is a nonparametric method for measuring the relative efficiency of a set of homogeneous units. In this work, we present an algorithm for solving an iterative multi-unit combinatorial auction in which the auctioneer computes at each round a linear anonymous price for each item by using a DEA model and pushes bidders to express bids according to them. A computational study is carried out in order to check the performance of the proposed design.

Keywords

DEA efficiency Winner-determination algorithm Auction design Combinatorial auction Iterative multi-unit auction 

Mathematics Subject Classification (2000)

90-02 90C10 90B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson A, Tenhnen M, Ygge F (2000) Integer programming for combinatorial auction winner determination. In: Proceedings of the fourth international conference on multiagent systems, Boston, MA Google Scholar
  2. Ausubel L, Milgrom P (2002) Ascending auctions with package bidding. Front Theor Econ 1(1), www.bepress.com
  3. Banker R (1980) A game theoretic approach to measuring efficiency. Eur J Oper Res 5(4):262–268 CrossRefGoogle Scholar
  4. Banker RD, Charnes A, Cooper WW, Clarke R (1989) Constrained game formulations and interpretations for data envelopment analysis. Eur J Oper Res 40(3):299–308 CrossRefGoogle Scholar
  5. Bikhchandani S, Ostroy JM (2006) From the assignment model to combinatorial auctions. In: Cramton P, Shoham Y, Steinberg R (eds) Combinatorial auctions. MIT Press, Cambridge Google Scholar
  6. Bichler M, Shabalin P, Pikovsky A (2007) A computational analysis of linear price iterative combinatorial auction formats. INFORMS Inf Syst Res (to appear), http://ibis.in.tum.de/staff/bichler/
  7. Bogetoft P, Nielsen K (2002) DEA based yardstick competition in natural resource management. In: Finn H, Niels S, Lars W (eds) Recent accomplishments in applied forest economics research. Kluwer Academic, Dordrecht Google Scholar
  8. Bogetoft P, Nielsen K (2008) DEA based auctions. Eur J Oper Res 184(2):685–700 CrossRefGoogle Scholar
  9. Bogetoft P, Boye K, Neergaard-Petersen H, Nielsen K (2007) Reallocating sugar beat contracts: can sugar production survive in Denmark? Eur Rev Agric Econ 34(1):1–20 CrossRefGoogle Scholar
  10. Caplice C, Sheffi Y, (2006) Combinatorial auctions for truckload transportation. In: Cramton, Shoham, Steinberg (eds) Combinational auctions. MIT Press, Cambridge Google Scholar
  11. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444 CrossRefGoogle Scholar
  12. Che YK (1993) Design competition through multidimensional auctions. RAND J Econ 24(4):668–680 CrossRefGoogle Scholar
  13. Cooper WW, Seiford LM, Tone K (2000) Data envelopment analysis: a comprehensive text with models, applications, references and dea-solver software. Kluwer Academic, Dordrecht Google Scholar
  14. Cramton P, Shoham Y, Steinberg R (2006) Combinatorial auctions. In: Cramton, Shoham, Steinberg (eds) Combinational auctions. MIT Press, Cambridge Google Scholar
  15. Cybernomics (2000) An experimental comparison of the simultaneous multiple round auctions and the CRA combinatorial auction. Technical report, report of the Federal Communications Commission, FCC, Washington, DC Google Scholar
  16. De Vries S, Vohra R (2003) Combinatorial auctions: a survey. INFORMS J Comput 15(3):284–309 CrossRefGoogle Scholar
  17. De Vries S, Schummer J, Vohra R (2007) On ascending Vickrey auctions for heterogeneous objects. J Econ Theory 127(1):95–118 Google Scholar
  18. Gonen R, Lehmann D (2000) Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics. In: ACM conf on electronic commerce (EC-00), Minneapolis, MN, pp 13–20 Google Scholar
  19. Jones JL, Koehler GJ (2002) Combinatorial auctions using rule-based bids. Decis Support Syst 34:54–74 CrossRefGoogle Scholar
  20. Kelso AS, Crawford VP (1982) Job matching, coalition formation, and gross substitute. Econometrica 50:1483–1504 CrossRefGoogle Scholar
  21. Kwasnica A, Ledyard J, Porter D, DeMartini C (2005) A new and improved design for multiobject iterative auctions. Manag Sci 51(3):419–434 CrossRefGoogle Scholar
  22. Latacz-Lohmann U, Schilizzi S (2005) Auctions for conservation contracts: a review of the theoretical and empirical literature. Report to the Scottish environment and rural affairs department, October Google Scholar
  23. Leskelä RL, Teich J, Wallenius H, Wallenius J (2007) Decision support for multi-unit combinatorial bundle auctions. Decis Support Syst 43(2):420–434 CrossRefGoogle Scholar
  24. Leyton-Brown K, Shoham Y, Tennenholtz M (2000a) An algorithm for multi-unit combinatorial auction. In: Proc of the seventeenth national conf on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, Austin, TX, pp 56–61 Google Scholar
  25. Leyton-Brown K, Pearson M, Shoham Y (2000b) Towards a universal test suite for combinatorial auction algorithms. In: Proc ACM conf on electronic commerce, Minneapolis, pp 66–76 Google Scholar
  26. Parkes D, Ungar L (2002) An ascending-price generalized Vickrey auction. In: Stanford institute for theoretical economics (SITE) summer workshop: the economics of the Internet. http://www.eecs.harvard.edu/~parkes/pubs/iBEA.pdf
  27. Pikovsky A, Bichler M (2005) Information feedback in iterative combinatorial auctions. Conference proceedings, Wirtschaftsinformatik 2005, Bamberg, Germany. Springer, pp 331–350 Google Scholar
  28. Porter D, Rassenti S, Roopnarine A, Smith V (2003) Combinatorial auction design. In: Proc of the national academy of sciences of the United States of America Google Scholar
  29. Sandholm T, Suri S, Gilpin A, Levine D (2002) Winner determination in combinatorial auction generalizations. In: AAMAS, Italy, pp 69–76 Google Scholar
  30. Sandholm T, Suri S, Gilpin A, Levine D (2005) CABOB: A fast optimal algorithm for winner determination in combinatorial auctions. Manag Sci 51:374–390 CrossRefGoogle Scholar
  31. Thanassoulis E (2001) Introduction to the theory and application of data envelopment analysis: a foundation text with integrated software. Kluwer Academic, Dordrecht Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2008

Authors and Affiliations

  • Juan Aparicio
    • 1
  • Mercedes Landete
    • 1
  • Juan Francisco Monge
    • 1
  • Inmaculada Sirvent
    • 1
  1. 1.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations