, Volume 16, Issue 2, pp 258–271 | Cite as

SIOPRED: a prediction and optimisation integrated system for demand

Original Paper


This paper presents a forecasting support system based on the generalised Holt-Winters exponential smoothing scheme to forecast time series of levels of demand. It is conceived as an integrated tool which has been implemented in Visual Basic. For improving the accuracy of automatic forecasting it uses an optimisation-based scheme which unifies the stages of estimation of the parameters and model selection. Based on this scheme, suitable forecasts and prediction intervals are obtained. The performance of the proposed system is compared with a number of well-established automatic forecasting procedures with respect to the 3003 time series included in the M3-competition.


Forecasting Holt-Winters method Non-linear optimisation Decision support systems 

Mathematics Subject Classification (2000)

62M10 62M20 62P30 90C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723 CrossRefGoogle Scholar
  2. Bermúdez JD, Segura JV, Vercher E (2006a) Improving demand forecasting accuracy using non-linear programming software. J Oper Res Soc 57:94–100 CrossRefGoogle Scholar
  3. Bermúdez JD, Segura JV, Vercher E (2006b) A decision support system methodology for forecasting of time series based on soft computing. Comput Stat Data Anal 51:177–191 CrossRefGoogle Scholar
  4. Bermúdez JD, Segura JV, Vercher E (2007a) Predicción del consumo de agua con SIOPRED. In: Rojas I, Pomares H (eds) Actas de simposio de inteligencia computacional SICO’2007. Thomson, Madrid, pp 447–451 Google Scholar
  5. Bermúdez JD, Segura JV, Vercher E (2007b) Holt-Winters forecasting: an alternative formulation applied to UK air passenger data. J Appl Stat 34:1075–1090 CrossRefGoogle Scholar
  6. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs Google Scholar
  7. Chatfield C, Yar M (1991) Prediction Intervals for multiplicative Holt-Winters. Int J Forecast 7:31–37 CrossRefGoogle Scholar
  8. Gardner ES Jr (1988) A simple method of computing prediction intervals for time series forecasts. Manag Sci 34:541–546 CrossRefGoogle Scholar
  9. Gardner ES Jr (2006) Exponential smoothing: the state of the art—part II. Int J Forecast 22:637–666 CrossRefGoogle Scholar
  10. Hyndman RJ, Koehler AB, Snyder RD, Grose S (2002) A state space framework automatic forecasting using exponential smoothing. Int J Forecast 18:439–454 CrossRefGoogle Scholar
  11. Makridakis S, Hibon M (2000) The M3-competition: results, conclusions and implications. Int J Forecast 16:451–476 CrossRefGoogle Scholar
  12. Ord JK, Koehler AB, Snyder RD (1997) Estimation and prediction for a class of dynamic nonlinear statistical models. J Am Stat Assoc 92:1621–1629 CrossRefGoogle Scholar
  13. Segura JV, Vercher E (2001) A spreadsheet modelling approach to the Holt-Winters optimal forecasting. Eur J Oper Res 131:375–388 CrossRefGoogle Scholar
  14. Segura JV, Vercher E (2002) A mathematical programming model for the Holt-Winters multiplicative method. Working paper I-2002-02, Centro de Investigación Operativa Google Scholar
  15. Tashman LJ, Hoover J (2001) Diffusion of forecasting principles through software. In: Armstrong JS (ed) Principles of forecasting. Kluwer Academic, Boston, pp 651–676 Google Scholar
  16. Theil H (1966) Applied economic forecasting. North-Holland, Amsterdam Google Scholar
  17. Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manag Sci 6:324–342 Google Scholar
  18. Yu X, Kacprzyk J (eds) (2003) Applied decision support with soft computing, vol 124. Springer, Berlin Google Scholar
  19. Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2008

Authors and Affiliations

  1. 1.Dpto. Estadística e Investigación OperativaUniversitat de ValènciaBurjassotSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations