Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem

This is a preview of subscription content, access via your institution.

References

  1. Boistard H, Lopuhaä HP, Ruiz-Gazen A (2017) Functional central limit theorems for single-stage sampling designs. Ann Stat 45(4):1728–1758

    MathSciNet  Article  Google Scholar 

  2. Cardot H, Josserand E (2011) Horvitz-Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling. Biometrika 98(1):107–118

    MathSciNet  Article  Google Scholar 

  3. Chang T, Kott PS (2008) Using calibration weighting to adjust for nonresponse under a plausible model. Biometrika 95:555–571

    MathSciNet  Article  Google Scholar 

  4. Cressie N, Read TRC (1984) Multinomial goodness-of-fit tests. J R Stat Soc Ser B (Methodol) 46(3):440–464

    MathSciNet  MATH  Google Scholar 

  5. Deville JC (1998) La correction de la non-réponse par calage ou par échantillonnage équilibré. Technical report In see, Paris, recueil de la Section des méthodes d’enquête

  6. Deville JC (2000) Generalized calibration and application to weighting for non-response. Compstat—proceedings in computational statistics: 14th symposium held in Utrecht. Springer, New York, pp 65–76

    Google Scholar 

  7. Deville JC (2002) La correction de la nonréponse par calage généralisé. Actes des Journées de Méthodologie Statistique. Insee-Méthodes, Paris, pp 3–20

    Google Scholar 

  8. Deville JC (2004) Calage, calage généralisé et hypercalage. Technical report Insee Paris

  9. Deville JC, Dupont F (1993) Non-réponse: principes et méthodes. Actes des Journées de Méthodologie statistique. Insee, Paris, pp 53–70

    Google Scholar 

  10. Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:376–382

    MathSciNet  Article  Google Scholar 

  11. Dupont F (1994) Calibration used as a nonresponse adjustment, studies in classification, data analysis, and knowledge organization. In: Diday E (ed) New approaches in classification and data analysis. Springer, Berlin, pp 539–548

    Google Scholar 

  12. Dupont F (1996) Calage et redressement de la non-réponse totale : Validité de la pratique courante de redressement et comparaison des méthodes alternatives pour l’enquête sur la consommation alimentaire de 1989. In: Actes des journées de méthodologie statistique, 15 et 16 décembre 1993, Insee-Méthodes No 56-57-58, Complément, pp 9–42

  13. Folsom RE, Singh AC (2000) The generalized exponential model for design weight calibration for extreme values, nonresponse and poststratification. In: Section on survey research methods, American Statistical Association, pp 598–603

  14. Graf M (2016) Tight calibration of survey weights. institut de Statistique, Université de Neuchâtel

  15. Guandalini A, Tillé Y (2017) Design-based estimators calibrated on estimated totals from multiple surveys. Int Stat Rev 85:250–269

    MathSciNet  Article  Google Scholar 

  16. Haziza D, Beaumont JF (2017) Construction of weights in surveys: a review. Stat Sci 32(2):206–226

    MathSciNet  Article  Google Scholar 

  17. Huang ET, Fuller WA (1978) Non-negative regression estimation for sample survey data. In: Proceedings of the social statistics section of the American Statistical Association, pp 300–305

  18. Iannacchione VG, Milne JG, Folsom RE (1991) Response probability weight adjustments using logistic regression. In: Proceedings of the survey research methods section. American Statistical Association, pp 637–42

  19. Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32:133–142

    Google Scholar 

  20. Kott PS, Liao D (2012) Providing double protection for unit nonresponse with a nonlinear calibration-weighting routine. Surv Res Methods 6:105–111

    Google Scholar 

  21. Le Guennec J, Sautory O (2002) CALMAR2: une nouvelle version de la macro CALMAR de redressement d’échantillon par calage. Actes des Journées de Méthodologie. Insee, Paris, pp 33–38

    Google Scholar 

  22. Lesage É (2011) The use of estimating equations to perform a calibration on complex parameters. Surv Methodol 37(1):103–108

    Google Scholar 

  23. Lesage É, Haziza D, D’Haultfoeuille X (2019) A cautionary tale on instrumental calibration for the treatment of nonignorable unit nonresponse in surveys. J Am Stat Assoc 114:906–915

    MathSciNet  Article  Google Scholar 

  24. Lundström S, Särndal CE (1999) Calibration as a standard method for treatment of nonresponse. J Off Stat 15:305–327

    Google Scholar 

  25. Montanari GE, Ranalli MG (2005) Nonparametric model-calibration estimation in survey sampling. J Am Stat Assoc 100:1429–1442

    MathSciNet  Article  Google Scholar 

  26. Rebecq A (2017) icarus: Calibrates and Reweights Units in Samples, likelihood, estimation. R package version (3)

  27. Rebecq A (2019) Méthodes de sondage pour les données massives. PhD thesis, Université Paris Nanterre

  28. Rényi A (1961) On measures of entropy and information. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, vol 1, pp 547–561

  29. Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. Wiley, New York

    Google Scholar 

  30. Vallée AA, Tillé Y (2019) Linearization for variance estimation by means of sampling indicators: application to nonresponse. Int Stat Rev 87(2):347–367

    MathSciNet  Article  Google Scholar 

  31. Vanderhoeft C (2001) Generalised calibration at Statistics Belgium SPSS module gCALIBS and current practices. Technical report, Statistics Belgium Working Paper No. 3

  32. Wu C, Sitter RR (2001) A model-calibration approach to using complete auxiliary information from survey data. J Am Stat Assoc 96:185–193

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denis Devaud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This rejoinder refers to the comments available at: https://doi.org/10.1007/s11749-019-00682-2; https://doi.org/10.1007/s11749-019-00683-1; https://doi.org/10.1007/s11749-019-00684-0; https://doi.org/10.1007/s11749-019-00686-y; https://doi.org/10.1007/s11749-019-00687-x.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devaud, D., Tillé, Y. Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem. TEST 28, 1087–1091 (2019). https://doi.org/10.1007/s11749-019-00685-z

Download citation