Skip to main content
Log in

Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

The multivariate t nonlinear mixed-effects model (MtNLMM) has been shown to be effective for analyzing multi-outcome longitudinal data following nonlinear growth patterns with fat-tailed noises or potential outliers. This paper considers the problem of clustering heterogeneous longitudinal profiles in a mixture framework of MtNLMM. A finite mixture of multivariate t nonlinear mixed model is proposed, and this new model allows accommodating more complex features of longitudinal data. Intermittent missing values frequently occur in the data collection process of multiple repeated measures. Under a missing at random mechanism, a pseudo-data version of the alternating expectation-conditional maximization algorithm is developed to carry out maximum likelihood estimation and impute missing values simultaneously. The techniques for clustering of incomplete multiple trajectories, recovery of missing responses, and allocation of future subjects are also investigated. The practical utility is demonstrated through a real data example coming from a study of 124 normal and 37 abnormal pregnant women. Simulation studies are provided to validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the 2nd international symposium on information theory, Akademiai, Kiado, Budapest, pp 267–281

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Azzalini A, Capitaino A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J R Stat Soc Ser B 65:367–389

    Article  MathSciNet  MATH  Google Scholar 

  • Bai X, Chen K, Yao W (2016) Mixture of linear mixed models using multivariate \(t\) distribution. J Stat Comput Simul 86:771–787

    Article  MathSciNet  Google Scholar 

  • Becker C, Gather U (1999) The masking breakdown point of multivariate outlier identification rules. J Am Stat Assoc 94(447):947–955

    Article  MathSciNet  MATH  Google Scholar 

  • Booth JG, Casella G, Hobert JP (2008) Clustering using objective functions and stochastic search. J R Stat Soc B 70:119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Celeux G, Martin O, Lavergne C (2005) Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Stat Model 5:243–267

    Article  MathSciNet  MATH  Google Scholar 

  • De la Cruz-Mesía R, Quintana FA, Marshall G (2008) Model-based clustering for longitudinal data. Comput Stat Data Anal 52:1441–1457

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39:1–38

    MATH  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Patt Recog Lett 27:861–874

    Article  Google Scholar 

  • Filzmoser P, Garrett RG, Reimann C (2005) Multivariate outlier detection in exploration geochemistry. Comput Geosci 31:579–587

    Article  Google Scholar 

  • Gaffney SJ, Smyth P (2003) Curve clustering with random effects regression mixtures. In: Bishop CM, Frey BJ (eds) Proceedings of the 9th international workshop on artificial intelligence and statistics, Key West

  • Goldfeld SM, Quandt RE (1973) A Markov model for switching regression. J Econom 1:3–15

    Article  MATH  Google Scholar 

  • Grün B, Leisch F (2008) Finite mixtures of generalized linear regression models. Recent advances in linear models and related areas: essays in honour of helge toutenburg. Physica-Verlag HD, Heidelberg, pp 205–230

    Chapter  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. Appl Stat 28(1):100–108

    Article  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) Elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  MATH  Google Scholar 

  • Hennig C (2000) Identifiablity of models for clusterwise linear regression. J Classif 17(2):273–296

    Article  MathSciNet  MATH  Google Scholar 

  • Ho HJ, Lin TI (2010) Robust linear mixed models using the skew \(t\) distribution with application to schizophrenia data. Biom J 52:449–469

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  MATH  Google Scholar 

  • Hughes JP (1999) Mixed-effects models with censored data with application to HIV RNA levels. Biometrics 55:625–629

    Article  MATH  Google Scholar 

  • Ibrahim J, Molenberghs G (2009) Missing data methods in longitudinal studies: a review. TEST 18:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Ingrassia S, Minotti SC, Punzo A (2014) Model-based clustering via linear cluster-weighted models. Comput Statist Data Anal 71:159–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kotz S, Nadarajah S (2004) Multivariate \(t\) distributions and their applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lachos VH, Bandyopadhyay D, Dey DK (2011) Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions. Biometrics 67:1594–1604

    Article  MathSciNet  MATH  Google Scholar 

  • Laird NM, Ware JH (1982) Random effects models for longitudinal data. Biometrics 38:963–974

    Article  MATH  Google Scholar 

  • Lin TI, Lee JC (2008) Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Stat Med 27:1490–1507

    Article  MathSciNet  Google Scholar 

  • Lin TI, Wang WL (2013) Multivariate skew-normal linear mixed models for multi-outcome longitudinal data. Stat Model 13:199–221

    Article  MathSciNet  Google Scholar 

  • Lin TI, Wang WL (2017) Multivariate-\(t\) nonlinear mixed models with application to censored multi-outcome AIDS studies. Biostatistics 18(4):666–681

    Google Scholar 

  • Lin TI, McLachlanc GJ, Lee SX (2016) Extending mixtures of factor models using the restricted multivariate skew-normal distribution. J Multivar Anal 143:398–413

    Article  MathSciNet  MATH  Google Scholar 

  • Lin TI, Lachos VH, Wang WL (2018) Multivariate longitudinal data analysis with censored and intermittent missing responses. Stat Med 37:2822–2835

    Article  MathSciNet  Google Scholar 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  MathSciNet  Google Scholar 

  • Little RJA (1995) Modeling the drop-out mechanism in repeated-measures studies. J Am Stat Assoc 90:1113–1121

    MathSciNet  MATH  Google Scholar 

  • Lo K, Gottardo R (2012) Flexible mixture modeling via the multivariate \(t\) distribution with the Box–Cox transformation: an alternative to the skew-\(t\) distribution. Stat Comput 22(1):33–52

    Article  MathSciNet  MATH  Google Scholar 

  • Marinoa MF, Alfó M (2016) Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: a simulation study. Comput Stat Data Anal 94:193–209

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall G, De la Cruz-Mesia R, Baron AE, Rutledge JH, Zerbe GO (2006) Non-linear random effects model for multivariate responses with missing data. Stat Med 25:2817–2830

    Article  MathSciNet  Google Scholar 

  • Marshall G, De la Cruz-Mesia R, Quintana FA, Baron AE (2009) Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 65:69–80

    Article  MathSciNet  MATH  Google Scholar 

  • Maruotti A (2011) Mixed hidden Markov models for longitudinal data: an overview. Int Stat Rev 79(3):427–454

    Article  MATH  Google Scholar 

  • Maruotti A (2015) Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure. TEST 24:84–109

    Article  MathSciNet  MATH  Google Scholar 

  • Maruotti A, Punzo A (2017) Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers. Comput Stat Data Anal 113:475–496

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • McNicholas PD, Murphy TB (2010) Model-based clustering of longitudinal data. Can J Stat 38(1):153–168

    MathSciNet  MATH  Google Scholar 

  • Meng XL, van Dyk D (1997) The EM algorithm—an old folk-song sung to a fast new tune. J R Stat Soc Ser B 59:511–567

    Article  MathSciNet  MATH  Google Scholar 

  • Muñoz A, Carey V, Schouten JP, Segal M, Rosner B (1992) A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48:733–42

    Article  Google Scholar 

  • Ng SK, McLachlan GJ, Wang K, Ben-Tovim L, Ng SW (2006) A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics 22:1745–1752

    Article  Google Scholar 

  • Peel D, McLachlan GJ (2000) Robust mixture modelling using the \(t\) distribution. Stat Comput 10:339–348

    Article  Google Scholar 

  • Pfeifer C (2004) Classification of longitudinal profiles based on semi-parametric regression with mixed effects. Stat Med 4:314–323

    Article  MathSciNet  MATH  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme. Accessed 8 Sept 2016

  • Punzo A, McNicholas PD (2017) Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model. J Classif 34(2):249–293

    Article  MathSciNet  MATH  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77

    Article  Google Scholar 

  • Rousseeuw PJ, Van Zomeren BC (1990) Unmasking multivariate outliers and leverage points. J Am Stat Assoc 85(411):633–651

    Article  Google Scholar 

  • Roy A (2006) Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biom J 48:286–301

    Article  MathSciNet  Google Scholar 

  • Roy J, Lin X (2002) Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. J Am Stat Assoc 97:40–52

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin DB (1976) Inference and missing data. Biometrika 63:581–592

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York

    Book  MATH  Google Scholar 

  • Sahu SK, Dey DK, Branco MD (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Can J Stat 31:129–150

    Article  MathSciNet  MATH  Google Scholar 

  • Schroeter P, Vesin JM, Langenberger T, Meuli R (1998) Robust parameter estimation of intensity distributions for brain magnetic resonance images. IEEE Trans Med Imaging 17(2):172–186

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Shah A, Laird N, Schoenfeld D (1997) A random-effects model for multiple characteristics with possibly missing data. J Amer Statist Assoc 92:775–779

    Article  MathSciNet  MATH  Google Scholar 

  • Spiessens B, Verbeke G, Komárek A (2002) A SAS-macro for the classification of longitudinal profiles using mixtures of normal distributions in nonlinear and generalised linear mixed models. Technical Report, Biostatistical Center, Catholic Univ., Leuven

  • Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc Ser B 62:795–809

    Article  MathSciNet  MATH  Google Scholar 

  • Vaida F, Liu L (2009) Fast implementation for normal mixed effects models with censored response. J Comput Graph Stat 18:797–817

    Article  MathSciNet  Google Scholar 

  • Verbeke G, Lesaffre E (1996) A linear mixed-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 91:217–221

    Article  MATH  Google Scholar 

  • Wang WL (2013) Multivariate \(t\) linear mixed models for irregularly observed multiple repeated measures with missing outcomes. Biom J 55:554–571

    Article  MathSciNet  MATH  Google Scholar 

  • Wang WL (2017) Mixture of multivariate-\(t\) linear mixed models for multi-outcome longitudinal data with heterogeneity. Stat Sin 27:733–760

    MathSciNet  MATH  Google Scholar 

  • Wang WL, Fan TH (2010) ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Comput Stat Data Anal 54:1328–1341

    Article  MathSciNet  MATH  Google Scholar 

  • Wang WL, Fan TH (2011) Estimation in multivariate \(t\) linear mixed models for multiple longitudinal data. Stat Sin 21:1857–1880

    MathSciNet  MATH  Google Scholar 

  • Wang WL, Lin TI (2014) Multivariate \(t\) nonlinear mixed-effects models for multi-outcome longitudinal data with missing values. Stat Med 33:3029–3046

    Article  MathSciNet  Google Scholar 

  • Wang WL, Lin TI (2015) Bayesian analysis of multivariate \(t\) linear mixed models with missing responses at random. J Stat Computat Simul 85:3594–3612

    Article  MathSciNet  Google Scholar 

  • Wang WL, Lin TI, Lachos VH (2018) Extending multivariate-\(t\) linear mixed models for multiple longitudinal data with censored responses and heavy tails. Stat Methods Med Res 27(1):48–64

    Article  MathSciNet  Google Scholar 

  • Wolfinger RD, Lin X (1997) Two Taylor-series approximation methods for nonlinear mixed models. Comput Stat Data Anal 25:465–490

    Article  MATH  Google Scholar 

  • Yamashita T, Okamoto S, Thomas A, MacLachlan V, Healy DL (1989) Predicting pregnancy outcome after in vitro fertilization and embryo transfer using estradiol, progesterone and human chorionic gonadotrophin \(\beta \)-subunit. Ferti Ster 51:304–309

    Article  Google Scholar 

  • Yao W, Wei Y, Yu C (2014) Robust mixture regression using the \(t\)-distribution. Comput Stat Data Anal 71:116–127

    Article  MathSciNet  MATH  Google Scholar 

  • Yu C, Chen K, Yao W (2015) Outlier detection and robust mixture modeling using nonconvex penalized likelihood. J Stat Plann Inference 164:27–38

    Article  MathSciNet  MATH  Google Scholar 

  • Yu C, Yao W, Chen K (2017) A new method for robust mixture regression. Can J Stat 45(1):77–94

    Article  MathSciNet  Google Scholar 

  • Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R, 2nd edn. Chapman and Hall, Boca Raton

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express her deepest gratitude to the Co-Editor, the Associate Editor and two anonymous reviewers for their insightful comments and suggestions that greatly improved this paper. This research was supported by MOST 107-2628-M-035-001-MY3 awarded by the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Lun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WL. Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values. TEST 28, 196–222 (2019). https://doi.org/10.1007/s11749-018-0612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0612-4

Keywords

Mathematics Subject Classification

Navigation