, Volume 25, Issue 1, pp 113–130 | Cite as

Bayesian nonparametric location–scale–shape mixtures

Original Paper


Discrete mixture models are one of the most successful approaches for density estimation. Under a Bayesian nonparametric framework, Dirichlet process location–scale mixture of Gaussian kernels is the golden standard, both having nice theoretical properties and computational tractability. In this paper we explore the use of the skew-normal kernel, which can naturally accommodate several degrees of skewness by the use of a third parameter. The choice of this kernel function allows us to formulate nonparametric location–scale–shape mixture prior with desirable theoretical properties and good performance in different applications. Efficient Gibbs sampling algorithms are also discussed and the performance of the methods are tested through simulations and applications to galaxy velocity and fertility data. Extensions to accommodate discrete data are also discussed.


Discrete random probability measures Model-based clustering Skew-normal distribution Rounded mixture priors 

Mathematics Subject Classification

62F15 62E15 



The authors thank Adelchi Azzalini for his shepherding into the skew world and Pierpaolo De Blasi, Stefano Mazzucco, and Igor Prünster for comments on early versions of the paper. The comments of two anonymous referees and of the Associate Editor are gratefully acknowledged.

Supplementary material

11749_2015_446_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (pdf 338 KB)


  1. Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Stat 33(3):561–574CrossRefMathSciNetMATHGoogle Scholar
  2. Arellano-Valle RB, Genton MG, Loschi RH (2009) Shape mixture of multivariate skew-normal distributions. J Multivar Anal 100:91–101CrossRefMathSciNetMATHGoogle Scholar
  3. Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178MathSciNetMATHGoogle Scholar
  4. Cabras S, Racugno W, Castellanos M, Ventura L (2012) A matching prior for the shape parameter of the skew-normal distribution. Scand J Stat 39:236–247CrossRefMathSciNetMATHGoogle Scholar
  5. Canale A, Dunson DB (2011) Bayesian kernel mixtures for counts. J Am Stat Assoc 106(496):1528–1539CrossRefMathSciNetMATHGoogle Scholar
  6. Canale A, Scarpa B (2013) Informative bayesian inference for the skew-normal distribution. arXiv:1305.3080
  7. Cavatti Vieira C, Loschi RH, Duarte D (2013) Nonparametric mixtures based on skew-normal distributions: an application to density estimation. Commun Stat A Theor. doi: 10.1080/03610926.2013.771745 (in press)
  8. Chandola T, Coleman D, Hiorns RW (1999) Recent European fertility patterns: fitting curves to ‘distorted’ distributions. Pop Stud 53:317–329CrossRefGoogle Scholar
  9. Dunson DB, Pillai N, Park J-H (2007) Bayesian density regression. J R Stat Soc B Methodol 69:163–183CrossRefMathSciNetMATHGoogle Scholar
  10. Efron B, Morris C (1972) Limiting the risk of Bayes and empirical Bayes estimators—part II: the empirical Bayes case. J Am Stat Assoc 67:130–139MathSciNetMATHGoogle Scholar
  11. Escobar MD, West M (1995) Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90:577–588CrossRefMathSciNetMATHGoogle Scholar
  12. Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230CrossRefMathSciNetMATHGoogle Scholar
  13. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631CrossRefMathSciNetMATHGoogle Scholar
  14. Freedman D, Diaconis P (1981) On the histogram as a density estimator: \(L_2\) theory. Probab Theory Relat 57:453–476MathSciNetMATHGoogle Scholar
  15. Frühwirth-Shnatter S, Pyne S (2010) Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-\(t\) distributions. Biostatistics 11:317–336CrossRefGoogle Scholar
  16. Ghosal S, Ghosh JK, Ramamoorthi RV (1999) Posterior consistency of Dirichlet mixtures in density estimation. Ann Stat 27(1):143–158CrossRefMathSciNetMATHGoogle Scholar
  17. Gnedin A, Pitman J (2005) Exchangeable gibbs partitions and stirling triangles. Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 325:83–102MATHGoogle Scholar
  18. Kalli M, Griffin J, Walker S (2011) Slice sampling mixture models. Stat Comput 21(1):93–105CrossRefMathSciNetMATHGoogle Scholar
  19. Lijoi A, Mena RH, Prünster I (2005) Hierarchical mixture modelling with normalized inverse Gaussian priors. J Am Stat Assoc 100:1278–1291CrossRefMATHGoogle Scholar
  20. Lin TI, Lee JC, Yen SY (2007) Finite mixture modelling using the skew normal distribution. Stat Sin 17:909–927MathSciNetMATHGoogle Scholar
  21. Liseo B (1990) La classe delle densità normali sghembe: aspetti inferenziali da un punto di vista bayesiano. Statistica L:71–82Google Scholar
  22. Liseo B, Loperfido N (2006) A note on reference priors for the scalar skew-normal distribution. J Stat Plan Infer 136:373–389CrossRefMathSciNetMATHGoogle Scholar
  23. Lo AY (1984) On a class of Bayesian nonparametric estimates: I. Density estimates. Ann Stat 12:351–357CrossRefMATHGoogle Scholar
  24. McCulloch RE (1989) Local model influence. J Am Stat Assoc 84:473–478CrossRefGoogle Scholar
  25. Pati D, Dunson DB, Tokdar ST (2013) Posterior consistency in conditional distribution estimation. J Multivar Anal 116:456–472CrossRefMathSciNetMATHGoogle Scholar
  26. Peristera P, Kostaki A (2007) Modelling fertility in modern populations. Demogr Res 16:141–194CrossRefGoogle Scholar
  27. Perman M, Pitman J, Yor M (1992) Size-biased sampling of poisson point processes and excursions. Probab Theory Relat 92:21–39CrossRefMathSciNetMATHGoogle Scholar
  28. Petralia F, Rao VA, Dunson DB (2012) Repulsive mixture. In: Bartlett P, Pereira F, Burges C, Bottou L, Weinberger K (eds) NIPS, vol 25, pp 1898–1906Google Scholar
  29. Rodríguez CE, Walker SG (2014) Univariate Bayesian nonparametric mixture modeling with unimodal kernels. Stat Comput 24(1):35–49CrossRefMathSciNetGoogle Scholar
  30. Roeder K (1990) Density estimation with confidence sets emplified by superclusters and voids in galaxies. J Am Stat Assoc 85:617–624CrossRefMATHGoogle Scholar
  31. Schwartz L (1965) On Bayes procedures. Z Wahrscheinlichkeit 4:10–26CrossRefMATHGoogle Scholar
  32. Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sin 4:639–650MathSciNetMATHGoogle Scholar
  33. Wu Y, Ghosal S (2008) Kullback Leibler property of kernel mixture priors in Bayesian density estimation. Electron J Stat 2:298–331CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2015

Authors and Affiliations

  1. 1.Department of Economics and StatisticsUniversity of TurinTurinItaly
  2. 2.Collegio Carlo AlbertoMoncalieriItaly
  3. 3.Department of Statistical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations