Skip to main content
Log in

Limit laws for maxima of a stationary random sequence with random sample size

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Let {X n } be a stationary sequence and {k n } be a nondecreasing sequence such that k n+1/k n r≥1. Assume that the limit distribution G of \(M_{k_{n}}\) with an appropriate linear normalization exists. We consider the maxima M n =max {X i ,in} sampled at random times T n , where T n /k n converges in probability to a positive random variable D, and show that the limit distribution of \(M_{T_{n}}\) exists under weak mixing conditions. The limit distribution of \(M_{T_{n}}\) is a mixture of G and the distribution of D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpuim MT (1988) Contribuições à teoria de extremos em sucessões dependentes. PhD thesis, University of Lisbon

  • Alpuim MT, Catkan NA, Hüsler J (1995) Extremes and clustering of nonstationary max-AR(1) sequences. Stoch Process Appl 56:171–184

    Article  MATH  Google Scholar 

  • Anderson CW (1970) Extreme value theory for a class of discrete distribution with applications to some stochastic processes. J Appl Probab 7:99–113

    Article  MATH  Google Scholar 

  • Barndorff-Nielson O (1964) On a limit distribution of the maximum of a random number of independent random variables. Acta Math Acad Sci Hung 15:399–403

    Article  Google Scholar 

  • Becker-Kern P (2001) Max-semistable hemigroups: structure, domains of attraction and limit theorems with random sample size. Probab Math Stat 21:441–465

    MathSciNet  MATH  Google Scholar 

  • Canto e Castro L, de Haan L, Temido MG (2002) Rarely observed sample maxima. Theory Probab Appl 45:779–782

    MathSciNet  Google Scholar 

  • Chernick MR (1981) A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. Ann Probab 9:145–149

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira H (1995) Extremes of a random number of variables from periodic sequences. J Stat Plan Inference 45:133–141

    Article  MATH  Google Scholar 

  • Galambos J (1978) The theory of extreme of order statistics. Wiley, New York

    MATH  Google Scholar 

  • Grinevich IV (1993) Domains of attraction of the max-semistable laws under linear and power normalizations. Theory Probab Appl 38:640–650

    Article  MathSciNet  Google Scholar 

  • Hall A (2003) Extremes of integer-valued moving averages models with exponential type-tails. Extremes 6:361–379

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Temido MG (2007) On the maximum term of MA and max-AR models with margins in Anderson’s class. Theory Probab Appl 51:291–304

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Temido MG (2009) On the max-semistable limit of maxima of stationary sequences with missing values. J Stat Plan Inference 139:875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Pancheva E (1992) Multivariate max-semistable distributions. Theory Probab Appl 18:679–705

    MathSciNet  Google Scholar 

  • Rootzén H (1986) Extreme value theory for moving average processes. Ann Probab 14:612–652

    Article  MathSciNet  MATH  Google Scholar 

  • Silvestrov DS, Teugels JL (1998) Limit theorems for extremes with random sample sizes. Adv Appl Probab 30:777–806

    Article  MathSciNet  MATH  Google Scholar 

  • Temido MG, Canto e Castro L (2003) Max-semistable laws in extremes of stationary random sequences. Theory Probab Appl 47:365–374

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hüsler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, A., Hüsler, J. & Temido, M.G. Limit laws for maxima of a stationary random sequence with random sample size. TEST 21, 116–131 (2012). https://doi.org/10.1007/s11749-011-0238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-011-0238-2

Keywords

Mathematics Subject Classification (2000)

Navigation