Skip to main content
Log in

Fast and robust estimation of the multivariate errors in variables model

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In the multivariate errors in variables models, one wishes to retrieve a linear relationship of the form y=β t x+α, where both x and y can be multivariate. The variables y and x are not directly measurable, but observed with measurement error. The classical approach to estimate the multivariate errors in variables model is based on an eigenvector analysis of the joint covariance matrix of the observations. In this paper, a projection-pursuit approach is proposed to estimate the unknown parameters. The focus is on projection indices based on half-samples. These lead to robust estimators which can be computed using fast algorithms. Fisher consistency of the procedure is shown, without the need to make distributional assumptions on the x-variables. A simulation study gives insight into the robustness and the efficiency of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown M (1982) Robust line estimation with errors in both variables. J Am Stat Assoc 77:71–79

    Article  MATH  Google Scholar 

  • Butler RW, Davies PL, Jhun M (1993) Asymptotic for the minimum covariance determinant estimators. Ann Stat 21:1385–1400

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CL, Van Ness JW (1992) Generalized M-estimators for errors-in variables regression. Ann Stat 20:385–397

    Article  MATH  Google Scholar 

  • Cheng CL, Van Ness JW (1997) Robust calibration. Technometrics 38:401–411

    Article  Google Scholar 

  • Croux C, Haesbroeck G (1999) Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J Multivar Anal 71:161–190

    Article  MATH  MathSciNet  Google Scholar 

  • Croux C, Haesbroeck G (2000) Principal component analysis based on robust estimators of the covariance or correlation matrix: influence function and efficiencies. Biometrika 87:603–618

    Article  MATH  MathSciNet  Google Scholar 

  • Cuesta-Albertos JA, Gordaliza A, Matran C (1997) Trimmed k-means: an attempt to robustify quantizers. Ann Stat 25:553–576

    Article  MATH  MathSciNet  Google Scholar 

  • Fekri M, Ruiz-Gazen A (2004) Robust weighted orthogonal regression in the errors-in-variables model. J Multivar Anal 88:89–108

    Article  MATH  MathSciNet  Google Scholar 

  • Fuller WA (1987) Measurements errors models. Wiley, New York

    Book  Google Scholar 

  • Fuller WA (1999) Errors-in-variables model. In: Kotz S, Read C, Banks D (eds) Encyclopedia of statistical science, Update, vol 3. Wiley, New York, pp 213–216

    Google Scholar 

  • Garcia-Escudero LA, Gordaliza A, Matran C (1999) A central limit theorem for multivariate generalized trimmed k-means. Ann Stat 27:1061–1079

    Article  MATH  MathSciNet  Google Scholar 

  • Garcia-Escudero LA, Gordaliza A, Matran C, Mayo-Iscar A (2008) A general trimming approach to robust cluster analysis. Ann Stat 36:1324–1345

    Article  MATH  MathSciNet  Google Scholar 

  • Gleser LY (1981) Estimation in a multivariate errors in variables regression model: large sample results. Ann Stat 1:24–44

    Article  MathSciNet  Google Scholar 

  • Grübel R (1988) A minimal characterization of the covariance matrix. Metrika 35:49–52

    Article  MATH  MathSciNet  Google Scholar 

  • Jolliffe IT (2002) Principal components analysis. Springer, New York

    Google Scholar 

  • Kelly G (1984) The influence function in the errors in variables problem. Ann Stat 12:87–100

    Article  MATH  Google Scholar 

  • Maronna R (2005) Principal components and orthogonal regression based on robust scales. Technometrics 47:264–273

    Article  MathSciNet  Google Scholar 

  • Osborne BG, Fearn T, Miller AR, Douglas S (1984) Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs. J Sci Food Agric 35:99–105

    Article  Google Scholar 

  • Rousseeuw PJ (1985) Multivariate estimation with high breakdown point. In: Grossmann W, Pfulg G, Vincze I, Wertz W (eds) Mathematics, statistics and applications, vol B. Reidel, Dordrecht, pp 283–297

    Google Scholar 

  • Rousseeuw PJ, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41:212–223

    Article  Google Scholar 

  • Zamar RH (1989) Robust estimation in the errors-in-variables model. Biometrika 76:149–160

    Article  MATH  MathSciNet  Google Scholar 

  • Zamar RH (1992) Bias robust estimation in orthogonal regression. Ann Stat 20:1875–1888

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Croux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croux, C., Fekri, M. & Ruiz-Gazen, A. Fast and robust estimation of the multivariate errors in variables model. TEST 19, 286–303 (2010). https://doi.org/10.1007/s11749-009-0155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-009-0155-9

Keywords

Mathematics Subject Classification (2000)

Navigation