Panel data analysis—advantages and challenges

Abstract

We explain the proliferation of panel data studies in terms of (i) data availability, (ii) the more heightened capacity for modeling the complexity of human behavior than a single cross-section or time series data can possibly allow, and (iii) challenging methodology. Advantages and issues of panel data modeling are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. Ahn SC, Schmidt P (1995) Efficient estimation of models for dynamic panel data. J Econom 68:5–27

    MATH  Article  MathSciNet  Google Scholar 

  2. Aigner DJ, Hsiao C, Kapteyn A, Wansbeek T (1984) Latent variable models in econometrics. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol 2. North-Holland, Amsterdam, pp 1322–1393

    Google Scholar 

  3. Anderson TW (1959) On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann Math Stat 30:676–687

    MATH  Google Scholar 

  4. Anderson TW, Hsiao C (1981) Estimation of dynamic models with error components. J Am Stat Assoc 767:598–606

    Article  MathSciNet  Google Scholar 

  5. Anderson TW, Hsiao C (1982) Formulation and estimation of dynamic models using panel data. J Econom 18:47–82

    MATH  Article  MathSciNet  Google Scholar 

  6. Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic, Dordrecht

    Google Scholar 

  7. Anselin L, Griffith DA (1988) Do spatial effects really matter in regression analysis? Pap Reg Sci Assoc 65:11–34

    Google Scholar 

  8. Anselin L, Le Gallo J, Jayet H (2006) Spatial panel econometrics. In: Mátyás L, Sevestre P (eds) The econometrics of panel data: fundamentals and recent developments in theory, 3rd edn. Kluwer Academic, Dordrecht, Chap 18

    Google Scholar 

  9. Antweiler W (2001) Nested random effects estimation in unbalanced panel data. J Econom 101:295–313

    MATH  Article  MathSciNet  Google Scholar 

  10. Arellano M (2001) Discrete choice with panel data. Working paper 0101, CEMFI, Madrid

  11. Arellano M (2003) Panel data econometrics. Oxford University Press, Oxford

    Google Scholar 

  12. Arellano M, Bond SR (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58:277–297

    MATH  Article  Google Scholar 

  13. Arellano M, Bover O (1995) Another look at the instrumental variable estimation of error-components models. J Econom 68:29–51

    MATH  Article  Google Scholar 

  14. Arellano M, Bover O, Labeaga J (1999) Autoregressive models with sample selectivity for panel data. In: Hsiao C, Lahiri K, Lee LF, Pesaran MH (eds) Analysis of panels and limited dependent variable models. Cambridge University Press, Cambridge, pp 23–48

    Google Scholar 

  15. Bai J, Ng S (2002) Determining the number of factors in approximate factor models. Econometrica 70:91–121

    Article  MathSciNet  Google Scholar 

  16. Balestra P, Nerlove M (1966) Pooling cross-section and time series data in the estimation of a dynamic model: the demand for natural gas. Econometrica 34:585–612

    Article  Google Scholar 

  17. Baltagi BH (2001) Econometric analysis of panel data, 2nd edn. Wiley, New York

    Google Scholar 

  18. Baltagi BH, Kao C (2000) Nonstationary panels, cointegration in panels and dynamic panel, a survey. In: Baltagi BH (ed) Nonstationary panels, panel cointegration, and dynamic panels. Advances in econometrics, vol 15. JAI Press, Amsterdam, pp 7–51

    Google Scholar 

  19. Becketti S, Gould W, Lillard L, Welch F (1988) The panel study of income dynamics after fourteen years: an evaluation. J Labor Econ 6:472–492

    Article  Google Scholar 

  20. Ben-Porath Y (1973) Labor force participation rates and the supply of labor. J Political Econ 81:697–704

    Article  Google Scholar 

  21. Bhargava A, Sargan JD (1983) Estimating dynamic random effects models from panel data covering short time periods. Econometrica 51:1635–1659

    MATH  Article  MathSciNet  Google Scholar 

  22. Binder M, Hsiao C, Pesaran MH (2005) Estimation and inference in short panel vector autoregressions with unit roots and cointegration. Econom Theory 21:795–837

    MATH  Article  MathSciNet  Google Scholar 

  23. Biørn, E (1992) Econometrics of panel data with measurement errors. In: Mátyás L, Sevestre P (eds) The econometrics of panel data: theory and applications, 1st edn. Kluwer Academic, Dordrecht, pp 152–195

    Google Scholar 

  24. Breitung J, Pesaran MH (2006) Unit roots and cointegration in panels. In: Mátyás L, Sevestre, P (eds) The econometrics of panel data: fundamentals and recent developments in theory, 3rd edn. Kluwer Academic, Dordrecht, Chap 8

    Google Scholar 

  25. Butler JS, Moffitt R (1982) A computationally efficient quadrature procedure for the one factor multinominal probit model. Econometrica 50:761–764

    MATH  Article  Google Scholar 

  26. Carro JM (2005) Estimating dynamic panel data discrete choice models with fixed effects. J Econom (in press)

  27. Chamberlain G (1980) Analysis of covariance with qualitative data. Rev Econ Stud 47:225–238

    MATH  Article  MathSciNet  Google Scholar 

  28. Chamberlain G (1984) Panel data. In: Griliches Z, Intriligator M (eds) Handbook of econometrics, vol 2. North-Holland, Amsterdam, pp 1247–1318

    Google Scholar 

  29. Chamberlain G (1993) Feedback in panel data models. Discussion paper, Department of Economics, Harvard University

  30. Chang Y (2002) Nonlinear IV unit root tests in panels with cross-sectional dependency. J Econom 110:261–292

    MATH  Article  Google Scholar 

  31. Choi I (2001) Unit root tests for panel data. J Int Money Financ 20:249–272

    Article  Google Scholar 

  32. Choi I (2006) Nonstationary panels. In: Patterson K, Mills TC (eds) Palgrave handbooks of econometrics, vol 1. MacMillan, New York, pp 511–539

    Google Scholar 

  33. Conley TG (1999) GMM estimation with cross-sectional dependence. J Econom 92:1–45

    MATH  Article  MathSciNet  Google Scholar 

  34. Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J Roy Stat Soc Ser B 49:1–39

    MATH  MathSciNet  Google Scholar 

  35. Davis P (2002) Estimating multi-way error components models with unbalanced panel data structure. J Econom 106(1):67–95. Reprinted in: Baltagi BH, Sumney G (eds) Recent developments in the econometrics of panel data. Edward Elgar, UK

    MATH  Article  Google Scholar 

  36. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74:427–431

    MATH  Article  MathSciNet  Google Scholar 

  37. Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49:1057–1072

    MATH  Article  MathSciNet  Google Scholar 

  38. Granger CWJ (1990) Aggregation of time-series variables: a survey. In: Barker T, Pesaran MH (eds) Disaggregation in econometric modeling. Routledge, London

    Google Scholar 

  39. Griliches Z (1967) Distributed lags: a survey. Econometrica 35:16–49

    Article  MathSciNet  Google Scholar 

  40. Griliches Z, Hausman JA (1986) Errors-in-variables in panel data. J Econom 31:93–118

    Article  MathSciNet  Google Scholar 

  41. Hausman JA (1978) Specification tests in econometrics. Econometrica 46:1251–1271

    MATH  Article  MathSciNet  Google Scholar 

  42. Heckman JJ (1981) Statistical models for discrete panel data. In: Manski CF, McFadden D (eds) Structural analysis of discrete data with econometric applications. MIT Press, Cambridge, pp 114–178

    Google Scholar 

  43. Heckman JJ, Ichimura H, Smith J, Todd P (1998) Characterizing selection bias using experimental data. Econometrica 66:1017–1098

    MATH  Article  MathSciNet  Google Scholar 

  44. Honoré B (1992) Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica 60:533–567

    MATH  Article  MathSciNet  Google Scholar 

  45. Honoré B, Kyriazidou E (2000) Panel data discrete choice models with lagged dependent variables. Econometrica 68:839–874

    MATH  Article  MathSciNet  Google Scholar 

  46. Horowitz JL (1992) A smoothed maximum score estimator for the binary response model. Econometrica 60:505–531

    MATH  Article  MathSciNet  Google Scholar 

  47. Hsiao C (1986) Analysis of panel data. Econometric society monographs, vol 11. Cambridge University Press, New York

    Google Scholar 

  48. Hsiao C (1992) Random coefficient models. In: Mátyás L, Sevestre P (eds) The econometrics of panel data, 1st edn. Kluwer Academic, Dordrecht, pp 223–241. Reprinted in 2nd edn (1996), pp 410–428

    Google Scholar 

  49. Hsiao C (2003) Analysis of panel data, 2nd edn. Econometric society monographs, vol 34. Cambridge University Press, Cambridge

    Google Scholar 

  50. Hsiao C (2005) Why panel data? Singap Econ Rev 50(2):1–12

    Google Scholar 

  51. Hsiao C (2006) Longitudinal data analysis. In: The new Palgrave dictionary of economics. MacMillan (in press)

  52. Hsiao C, Pesaran MH (2006) Random coefficients models. In: Mátyás L, Sevestre P (eds) The econometrics of panel data: fundamentals and recent developments in theory, 3rd edn. Kluwer Academic, Dordrecht, Chap 5

    Google Scholar 

  53. Hsiao C, Tahmiscioglu T (2005) Estimation of dynamic panel data models with both individual and time specific effects

  54. Hsiao C, Luke Chan MW, Mountain DC, Tsui, KY (1989) Modeling Ontario regional electricity system demand using a mixed fixed and random coefficients approach. Reg Sci Urban Econ 19:567–587

    Article  Google Scholar 

  55. Hsiao C, Appelbe TW, Dineen CR (1993) A general framework for panel data analysis—with an application to Canadian customer dialed long distance service. J Econom 59:63–86

    MATH  Article  MathSciNet  Google Scholar 

  56. Hsiao C, Mountain DC, Ho-Illman K (1995) Bayesian integration of end-use metering and conditional demand analysis. J Bus Econ Stat 13:315–326

    Article  Google Scholar 

  57. Hsiao C, Pesaran MH, Tahmiscioglu AK (2002) Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. J Econom 109:107–150

    MATH  Article  MathSciNet  Google Scholar 

  58. Hsiao C, Shen Y, Fujiki H (2005) Aggregate vs disaggregate data analysis—a paradox in the estimation of money demand function of Japan under the low interest rate policy. J Appl Econom 20:579–601

    Article  MathSciNet  Google Scholar 

  59. Hsiao C, Shen Y, Wang B, Weeks G (2006) Evaluating the effectiveness of Washington state repeated job search services on the employment rate of prime-age female welfare recipients. Working paper

  60. Im K, Pesaran MH, Shin Y (2003) Testing for unit roots in heterogeneous panels. J Econom 115:53–74

    MATH  Article  MathSciNet  Google Scholar 

  61. Juster T (2000) Economics/micro data. In: International encyclopedia of social sciences

  62. Kao C (1999) Spurious regression and residual-based tests for cointegration in panel data. J Econom 90:1–44

    MATH  Article  MathSciNet  Google Scholar 

  63. Kyriazidou E (1997) Estimation of a panel data sample selection model. Econometrica 65:1335–1364

    MATH  Article  MathSciNet  Google Scholar 

  64. Lee MJ (1999) A root-n-consistent semiparametric estimator for related effects binary response panel data. Econometrica 67:427–433

    MATH  Article  MathSciNet  Google Scholar 

  65. Levin A, Lin C, Chu J (2002) Unit root tests in panel data: asymptotic and finite-sample properties. J Econom 108:1–24

    MATH  Article  MathSciNet  Google Scholar 

  66. Lewbel A (1994) Aggregation and simple dynamics. Am Econ Rev 84:905–918

    Google Scholar 

  67. MaCurdy TE (1981) An empirical model of labor supply in a life cycle setting. J Political Econ 89:1059–1085

    Article  Google Scholar 

  68. Manski CF (1987) Semiparametric analysis of random effects linear models from binary panel data. Econometrica 55:357–362

    MATH  Article  MathSciNet  Google Scholar 

  69. Mátyás L, Sevestre P (1996) The econometrics of panel data—handbook of theory and applications, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  70. Moon HR, Perron B (2004) Testing for a unit roots in panels with dynamic factors. J Econom 122:81–126

    Article  MathSciNet  Google Scholar 

  71. Nerlove M (2002) Essays in panel data econometrics. Cambridge University Press, Cambridge

    Google Scholar 

  72. Neyman J, Scott EL (1948) Consistent estimates based on partially consistent observations. Econometrica 16:1–32

    Article  MathSciNet  Google Scholar 

  73. Nickell S (1981) Biases in dynamic models with fixed effects. Econometrica 49:1399–1416

    Article  MathSciNet  Google Scholar 

  74. Pakes A, Griliches Z (1984) Estimating distributed lags in short panels with an application to the specification of depreciation patterns and capital stock constructs. Rev Econ Stud 51:243–262

    MATH  Article  Google Scholar 

  75. Pesaran MH (2003) On aggregation of linear dynamic models: an application to life-cycle consumption models under habit formation. Econ Model 20:227–435

    Article  Google Scholar 

  76. Pesaran MH (2004) Estimation and inference in large heterogeneous panels with cross-sectional dependence

  77. Pesaran MH (2005) A simple panel unit root test in the presence of cross-section dependence. Working paper 0346, Cambridge University DAE

  78. Phillips PCB, Durlauf SN (1986) Multiple time series regression with integrated processes. Rev Econ Stud 53:473–495

    MATH  Article  MathSciNet  Google Scholar 

  79. Phillips PCB, Moon HR (1999) Linear regression limit theory for nonstationary panel data. Econometrica 67:1057–1111

    MATH  Article  MathSciNet  Google Scholar 

  80. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Google Scholar 

  81. Rosenbaum P, Rubin D (1985) Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 79:516–524

    Article  Google Scholar 

  82. Wansbeek TJ, Koning RH (1989) Measurement error and panel data. Stat Neerl 45:85–92

    Article  Google Scholar 

  83. Ziliak JP (1997) Efficient estimation with panel data when instruments are predetermined: an empirical comparison of moment-condition estimators. J Bus Econ Stat 15:419–431

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheng Hsiao.

Additional information

This invited paper is discussed in the comments available at: http://dx.doi.org/10.1007/s11749-007-0047-9, http://dx.doi.org/10.1007/s11749-007-0048-8, http://dx.doi.org/10.1007/s11749-007-0049-7, http://dx.doi.org/10.1007/s11749-007-0050-1, http://dx.doi.org/10.1007/s11749-007-0051-0, http://dx.doi.org/10.1007/s11749-007-0052-z, http://dx.doi.org/10.1007/s11749-007-0053-y, http://dx.doi.org/10.1007/s11749-007-0054-x.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsiao, C. Panel data analysis—advantages and challenges. TEST 16, 1–22 (2007). https://doi.org/10.1007/s11749-007-0046-x

Download citation

Keywords

  • Panel data
  • Longitudinal data
  • Unobserved heterogeneity
  • Random effects
  • Fixed effects

Mathematics Subject Classification (2000)

  • 62-02