Skip to main content
Log in

On the equivalence of Aumann and Herer expectations of random sets

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Spaces where the Aumann and Herer notions of expectation of a random set coincide are exactly those having the Mazur Intersection Property (the closed convex hull of a bounded set is the intersection of all balls covering it). For a random compact set, more can be said: its Herer expectation is always the intersection of all closed balls covering its Aumann expectation. Some further consequences of these results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J (1983) Principal component analysis of compositional data. Biometrika 70:57–65

    Article  MATH  MathSciNet  Google Scholar 

  • Aubin JP (1999) Mutational and morphological analysis. Tools for shape evolution and morphogenesis. Birkhäuser, Boston

    MATH  Google Scholar 

  • Bru B, Heinich H, Lootgieter JC (1993) Distances de Lévy et extensions des théorèmes de la limite centrale et de Glivenko–Cantelli (Lévy metrics and extensions of the central limit theorem and the Glivenko–Cantelli theorem). Publ Inst Stat Univ Paris 37:29–42

    MATH  MathSciNet  Google Scholar 

  • Chen D, Lin BL (1995) On B-convex and Mazur sets in Banach spaces. Pol Acad Sci Bull Math 43:191–198

    MATH  MathSciNet  Google Scholar 

  • Chen D, Lin BL (1998) Ball separation properties in Banach spaces. Rocky Mt J Math 28:835–873

    Article  MATH  MathSciNet  Google Scholar 

  • Deville R, Godefroy G, Zizler V (1993) Smoothness and renormings in Banach spaces. Pitman monographs and surveys in pure and applied mathematics, vol 64. Longman Scientific & Technical, Harlow. Copublished in the United States with Wiley, Inc., New York

    Google Scholar 

  • Doss S (1949) Sur la moyenne d’un élément aléatoire dans un espace distancié (On the mean of a random element in a metric space). Bull Sci Math 73:1–26

    MathSciNet  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Díaz-Barrero JL (2006) De la geometría composicional al espacio de Hilbert de densidades. In: Actas XXIX congreso nacional estadística e investigación operativa y III jornadas de estadística pública, pp 703–704

  • Giles JR, Gregory DA, Sims B (1978) Characterisation of normed linear spaces with Mazur’s intersection property. Bull Aust Math Soc 18:105–123

    Article  MATH  MathSciNet  Google Scholar 

  • Granero AS, Jiménez-Sevilla M, Moreno JP (2004) Intersection of closed balls and geometry of Banach spaces. Extr Math 19:55–92

    MATH  Google Scholar 

  • Herer W (1987) Martingales à valeurs fermées bornées d’un espace métrique. Comptes Rendus Acad Sci Ser I Math 305:275–278

    MATH  MathSciNet  Google Scholar 

  • Herer W (1990) Mathematical expectation and martingales of random subsets of a metric space. Probab Math Stat 11:291–304

    MathSciNet  Google Scholar 

  • Herer W (1992) Mathematical expectation and strong law of large numbers for random variables with values in a metric space of negative curvature. Probab Math Stat 13:59–70

    MATH  MathSciNet  Google Scholar 

  • Hess C (2000) The Doss integral for random sets. Comparison with the Aumann integral. In: Proceedings of the 8th international conference on information processing and the management of uncertainty in knowledge-based systems, pp 515–520

  • Hess C (2002) Set-valued integration and set-valued probability theory: an overview. In: Pap E (ed) Handbook of measure theory. North-Holland, Amsterdam, pp 617–673

    Chapter  Google Scholar 

  • Hiai F, Umegaki H (1977) Integrals, conditional expectations, and martingales of multivalued functions. J Multivar Anal 7:149–182

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson WB, Lindenstrauss J (2001) Basic concepts in the geometry of Banach spaces. In: Johnson WB, Lindenstrauss J (eds) Handbook of the geometry of Banach spaces. North-Holland, Amsterdam, pp 1–84

    Chapter  Google Scholar 

  • Mazur S (1933) Über schwache Konvergenz in den Räumen L p (On weak convergence in L p spaces). Studia Math 4:128–133

    MATH  Google Scholar 

  • Molchanov I (2004) Applications of random sets in image analysis. How to average a cat and a dog? In: López-Díaz M, Gil MA, Grzegorzewski P, Hryniewicz O, Lawry J (eds) Soft methodology and random information systems. Springer, Berlin, pp 8–18

    Google Scholar 

  • Molchanov I (2005) Theory of random sets. Probability and its applications. Springer, London

    Google Scholar 

  • Molchanov IS (1999) Random closed sets: results and problems. In: Stochastic geometry, Toulouse, 1996. Monographs on statistics and applied probability, vol 80. Chapman & Hall/CRC, Boca Raton, pp 285–331

    Google Scholar 

  • Moreno JP, Papini PL, Phelps RR (2007) Diametrically maximal and constant width sets in Banach spaces. Can J Math 58:820–842

    MathSciNet  Google Scholar 

  • Raynaud de Fitte P (1997) Théorème ergodique ponctuel et lois fortes des grands nombres pour des points aléatoires d’un espace métrique à courbure négative (Pointwise ergodic theorem and strong laws of large numbers for random points of a negatively curved metric space). Ann Probab 25:738–766

    Article  MATH  MathSciNet  Google Scholar 

  • Sullivan F (1977) Dentability, smoothability and stronger properties in Banach spaces. Indiana Univ Math J 41:371–387

    MathSciNet  Google Scholar 

  • Terán P (2007a) Classical location estimators for random sets in the light of statistical depth (in preparation)

  • Terán P (2007b) Integral central and trimmed regions for precise and imprecise multivariate data (in preparation)

  • Terán P, Molchanov IS (2006) The law of large numbers in a metric space with a convex combination operation. J Theor Probab 19:875–898

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Terán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terán, P. On the equivalence of Aumann and Herer expectations of random sets. TEST 17, 505–514 (2008). https://doi.org/10.1007/s11749-007-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-007-0043-0

Keywords

Mathematics Subject Classification (2000)

Navigation