Skip to main content
Log in

Modeling maxima of longitudinal contralateral observations

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

The paper gives the joint distribution of maxima of contralateral observations taken from the same individual at several occasions, when the data are normal with given constraints on the parameters. Different constraints lead to different well-known generalizations of the normal distribution. As an immediate consequence, evaluation of several features of these maxima is greatly simplified. The results of the paper are also useful in modeling other phenomena, such as measures of physical fitness based on the best of two trials. Further applications deal with statistical inference, for example, testing whether an identified treatment is best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous DJ (1985) Exchangeability and related topics. In: Hennequin PL (ed) Ecole d’été de probabilités de Saint-Flour, XIII. Springer series in statistics. Springer, Berlin

    Google Scholar 

  • Arellano-Valle RB, Genton MG (2005) On fundamental skew distributions. J Multivar Anal 96:93–116

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold BC, Beaver RJ (2000) Hidden truncation models. Sankhya Ser A 62:22–35

    MathSciNet  Google Scholar 

  • Arnold BC, Beaver RJ (2002) Skewed multivariate models related to hidden truncation and/or selective reporting (with discussion). Test 11:7–54

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold BC, Beaver RJ (2004) Elliptical models subject to hidden truncation or selective sampling. In: Genton MG (ed) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman & Hall/CRC, Boca Raton, pp 101–112

    Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (2002) Discussion of Arnold and Beaver’s paper “Skewed multivariate models related to hidden truncation and/or selective reporting”. Test 11:36

    Google Scholar 

  • Azzalini A (2005) The skew-normal distribution and related multivariate families (with discussion). Scand J Stat 32:159–200

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. J Roy Stat Soc Ser B 65:367–389

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Cox DR (1984) Two new tests associated with analysis of variance. J Roy Stat Soc Ser B 46:335–343

    MATH  MathSciNet  Google Scholar 

  • Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83:715–726

    Article  MATH  MathSciNet  Google Scholar 

  • Cain M (1994) The moment-generating function of the minimum of bivariate normal random variables. Am Stat 48:124–125

    Article  MathSciNet  Google Scholar 

  • Cain M, Pan M (1995) Moments of the minimum of bivariate normal random variables. Math Sci 20:119–122

    MATH  MathSciNet  Google Scholar 

  • Capitanio A, Azzalini A, Stanghellini E (2003) Graphical models for skew-normal variates. Scand J Stat 30:129–144

    Article  MathSciNet  Google Scholar 

  • Cox DR, Wermuth N (1991) A simple approximation for bivariate and trivariate normal integrals. Int Stat Rev 59:263–269

    Article  MATH  Google Scholar 

  • Dalla Valle A (2004) The skew-normal distribution. In: Genton MG (ed) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman & Hall/CRC, Boca Raton, pp 3–24

    Google Scholar 

  • Fishman GA, Baca W, Alexander KR, Derlacky DJ, Glenn AM, Viana MAG (1993) Visual acuity in patients with best vitelliform macular distrophy. Ophthalmology 100:1665–1670

    Google Scholar 

  • Frenkel R, Shin D (1986) Prevention and management of delayed suprachoroidal hemorrhage after filtration surgery. Arch Ophthalmol 104:1459–1463

    Google Scholar 

  • Gupta PL, Gupta RC (2001) Failure rate of the minimum and maximum of a multivariate normal distribution. Metrika 53:39–49

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta SS, Pillai S (1965) On linear functions of ordered correlated normal random variables. Biometrika 52:367–379

    MATH  MathSciNet  Google Scholar 

  • Jiang J (1997) Sharp upper and lower bounds for asymptotic levels of some statistical tests. Stat Probab Lett 35:395–400

    Article  MATH  Google Scholar 

  • Kella O (1986) On the distribution of maximum of bivariate normal random variables with general means and variances. Commun Stat Theory Methods 15:3265–3276

    Article  MATH  MathSciNet  Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous multivariate distributions, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Laska EM, Meisner MJ (1989) Testing whether an identified treatment is best. Biometrics 45:1139–1151

    Article  MATH  MathSciNet  Google Scholar 

  • Loperfido N (2002) Statistical implications of selectively reported inferential results. Stat Probab Lett 56:13–22

    Article  MATH  MathSciNet  Google Scholar 

  • Nagarajah HN (1982) A note on linear functions of ordered correlated normal random variables. Biometrika 69:284–285

    Article  Google Scholar 

  • Olkin I, Viana M (1995) Correlation analysis of extreme observations from a multivariate normal distribution. J Am Stat Assoc 90:1373–1379

    Article  MATH  MathSciNet  Google Scholar 

  • Parving A, Christiansen B (1990) Hearing of the mentally retarded living at home. Ugeskr Læ152:3161–3164

    Google Scholar 

  • Roberts C (1966) A correlation model useful in the study of twins. J Am Stat Assoc 61:1184–1190

    Article  MATH  Google Scholar 

  • Sonty SP, Sonty S, Viana MAG (1996) The additive ocular hypotensive effect of topical 2% dorzolamide on glaucomatous eyes on topical beta blocker therapy. Investig Ophthalmol Vis Sci 37:1100

    Google Scholar 

  • Tomohiro O, Yoshio N, Kiyoji T (2003) Effects of exercise intensity on physical fitness and risk factors for coronary heart disease. Obes Res 11:1131–1139

    Article  Google Scholar 

  • Tong YL (1990) The multivariate normal distribution. Springer series in statistics. Springer, Berlin

    Google Scholar 

  • Viana M (1998) Linear combinations of ordered symmetric observations with application to visual acuity. In: Balakrishnan N, Rao CR (eds) Order statistics: applications. Handbook of statistics, vol 17. North Holland, Amsterdam, pp 513–524. Chap 19

    Google Scholar 

  • Viana M, Olkin I (2000) Symmetrically dependent models arising in visual assessment data. Biometrics 56:1188–1191

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Loperfido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loperfido, N. Modeling maxima of longitudinal contralateral observations. TEST 17, 370–380 (2008). https://doi.org/10.1007/s11749-006-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-006-0037-3

Keywords

Mathematics Subject Classification (2000)

Navigation