Skip to main content
Log in

Evaluation of myocardial work changes after lung resection—the significance of surgical approach: an echocardiographic comparison between VATS and thoracotomy

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objective

Considering the controversial benefits of video-assisted thoracoscopic surgery (VATS), we intended to evaluate the impact of surgical approach on cardiac function after lung resection using myocardial work analysis.

Methods

Echocardiographic data of 48 patients (25 thoracotomy vs. 23 VATS) were retrospectively analyzed. All patients underwent transthoracic echocardiography (TTE) within 2 weeks before and after surgery, including two-dimensional speckle tracking and tissue Doppler imaging.

Results

No notable changes in left ventricular (LV) function, assessed mainly using the LV global longitudinal strain (GLS), global myocardial work index (GMWI), and global work efficiency (GWE), were observed. Right ventricular (RV) TTE values, including tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (TASV), right ventricular global longitudinal strain (RVGLS), and RV free-wall GLS (RVFWGLS), indicated greater RV function impairment in the thoracotomy group than in the VATS group [TAPSE(mm) 17.90 ± 3.80 vs. 21.00 ± 3.48, p = 0.006; d = 0.84; TASV(cm/s): 12.40 ± 2.90 vs. 14.70 ± 2.40, p = 0.004, d = 0.86; RVGLS(%): − 16.00 ± 4.50 vs. − 19.40 ± 2.30, p = 0.012, d = 0.20; RVFWGLS(%): − 11.50 ± 8.50 vs. − 18.31 ± 5.40, p = 0.009, d = 0.59; respectively].

Conclusions

Unlike RV function, LV function remained preserved after lung resection. The thoracotomy group exhibited greater RV function impairment than did the VATS group. Further studies should evaluate the long-term impact of surgical approach on cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All authors confirm that they have full control of all primary data and agree to allow the journal to review the data if requested.

References

  1. Rana JS, Khan SS, Lloyd-Jones DM, Sidney S. Changes in mortality in top 10 causes of death from 2011 to 2018. J Gen Intern Med. 2021;36(8):2517–8.

    Article  PubMed  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  3. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e278S-e313S.

    Article  CAS  PubMed  Google Scholar 

  4. Sangha R, Price J, Butts CA. Adjuvant therapy in non-small cell lung cancer: current and future directions. Oncologist. 2010;15(8):862–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Ameri M, Bergman P, Franco-Cereceda A, Sartipy U. Video-assisted thoracoscopic versus open thoracotomy lobectomy: a Swedish nationwide cohort study. J Thorac Dis. 2018;10(6):3499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Batihan G, Ceylan KC, Usluer O, Kaya ŞÖ. Video-assisted thoracoscopic surgery vs thoracotomy for non-small cell lung cancer greater than 5 cm: is VATS a feasible approach for large tumors? J Cardiothorac Surg. 2020;15(1):261.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cassidy SS. Heart-lung interactions in health and disease. Am J Med Sci. 1987;294(6):451–61.

    Article  CAS  PubMed  Google Scholar 

  8. Pinsky MR. Cardiopulmonary interactions: physiologic basis and clinical applications. Ann Am Thorac Soc. 2018;15(Suppl 1):S45–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vainshelboim B, Fox BD, Saute M, Sagie A, Yehoshua L, Fuks L, et al. Limitations in exercise and functional capacity in long-term postpneumonectomy patients. J Cardiopulm Rehabil Prev. 2015;35(1):56–64.

    Article  PubMed  Google Scholar 

  10. Wang Z, Yuan J, Chu W, Kou Y, Zhang X. Evaluation of left and right ventricular myocardial function after lung resection using speckle tracking echocardiography. Medicine. 2016;95(31):e4290.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pedoto A, Amar D. Right heart function in thoracic surgery: role of echocardiography. Curr Opin Anesthesiol. 2009;22(1):44–9.

    Article  Google Scholar 

  12. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

  13. Peyrou J, Parsaï C, Chauvel C, Simon M, Dehant P, Abergel E. Echocardiographic assessment of right ventricular systolic function in a population of unselected patients before cardiac surgery: a multiparametric approach is necessary. Arch Cardiovasc Dis. 2014;107(10):529–39.

    Article  PubMed  Google Scholar 

  14. Boe E, Skulstad H, Smiseth OA. Myocardial work by echocardiography: a novel method ready for clinical testing. Eur Heart J Cardiovasc Imaging. 2019;20(1):18–20.

    Article  PubMed  Google Scholar 

  15. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. 2012;33(6):724–33.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000;102(10):1158–64.

    Article  CAS  PubMed  Google Scholar 

  17. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18(12):1301–10.

    Article  PubMed  Google Scholar 

  18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14.

    Article  PubMed  Google Scholar 

  19. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64.

    Article  PubMed  Google Scholar 

  20. Rothaug J, Zaslansky R, Schwenkglenks M, Komann M, Allvin R, Backström R, et al. Patients’ perception of postoperative pain management: validation of the International Pain Outcomes (IPO) questionnaire. J Pain. 2013;14(11):1361–70.

    Article  PubMed  Google Scholar 

  21. Falcoz PE, Conti M, Brouchet L, Chocron S, Puyraveau M, Mercier M, et al. The Thoracic Surgery Scoring System (Thoracoscore): risk model for in-hospital death in 15,183 patients requiring thoracic surgery. J Thorac Cardiovasc Surg. 2007;133(2):325–32.

    Article  PubMed  Google Scholar 

  22. Reed CE, Spinale FG, Crawford FA Jr. Effect of pulmonary resection on right ventricular function. Ann Thorac Surg. 1992;53(4):578–82.

    Article  CAS  PubMed  Google Scholar 

  23. Shelley B, Glass A, Keast T, McErlane J, Hughes C, Lafferty B, et al. Perioperative cardiovascular pathophysiology in patients undergoing lung resection surgery: a narrative review. Br J Anaesth. 2023;130(1):e66–79.

    Article  PubMed  Google Scholar 

  24. Lansdorp B, Hofhuizen C, van Lavieren M, van Swieten H, Lemson J, van Putten MJ, et al. Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions*. Crit Care Med. 2014;42(9):1983–90.

    Article  PubMed  Google Scholar 

  25. Ross AF, Ueda K. Pulmonary hypertension in thoracic surgical patients. Curr Opin Anaesthesiol. 2010;23(1):25–33.

    Article  PubMed  Google Scholar 

  26. Tong Y, Wei P, Wang S, Sun Q, Cui Y, Ning N, et al. Characteristics of postoperative pain after VATS and pain-related factors: the experience in National Cancer Center of China. J Pain Res. 2020;13:1861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Corp A, Thomas C, Adlam M. The cardiovascular effects of positive pressure ventilation. BJA Educ. 2021;21(6):202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koshino Y, Villarraga HR, Orban M, Bruce CJ, Pressman GS, Leinveber P, et al. Changes in left and right ventricular mechanics during the Mueller maneuver in healthy adults: a possible mechanism for abnormal cardiac function in patients with obstructive sleep apnea. Circ Cardiovasc Imaging. 2010;3(3):282–9.

    Article  PubMed  Google Scholar 

  29. Tarry D, Powell M. Hypoxic pulmonary vasoconstriction. BJA Education. 2017;17(6):208–13.

    Article  Google Scholar 

  30. Koshino Y, Villarraga HR, Orban M, Bruce CJ, Pressman GS, Leinveber P, et al. Changes in left and right ventricular mechanics during the Mueller maneuver in healthy adults. Circul Cardiovasc Imaging. 2010;3(3):282–9.

    Article  Google Scholar 

  31. Homma T, Shimada Y, Tanabe K. Decreased postoperative complications, neuropathic pain and epidural anesthesia-free effect of uniportal video-assisted thoracoscopic anatomical lung resection: a single-center initial experience of 100 cases. J Thorac Dis. 2022;14(9):3154–66.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei X, Yu H, Dai W, Mu Y, Wang Y, Liao J, et al. Patient-reported outcomes of video-assisted thoracoscopic surgery versus thoracotomy for locally advanced lung cancer: a longitudinal cohort study. Ann Surg Oncol. 2021;28(13):8358–71.

    Article  PubMed  Google Scholar 

  33. D’Andrea A, Radmilovic J, Carbone A, Mandoli GE, Santoro C, Evola V, et al. Speckle tracking evaluation in endurance athletes: the “optimal” myocardial work. Int J Cardiovasc Imaging. 2020;36(9):1679–88.

    Article  PubMed  Google Scholar 

  34. D’Andrea A, Sperlongano S, Formisano T, Tocci G, Cameli M, Tusa M, et al. Stress echocardiography and strain in aortic regurgitation (SESAR protocol): left ventricular contractile reserve and myocardial work in asymptomatic patients with severe aortic regurgitation. Echocardiography. 2020;37(8):1213–21.

    Article  PubMed  Google Scholar 

  35. Yerebakan C, Klopsch C, Niefeldt S, Zeisig V, Vollmar B, Liebold A, et al. Acute and chronic response of the right ventricle to surgically induced pressure and volume overload–an analysis of pressure-volume relations. Interact Cardiovasc Thorac Surg. 2010;10(4):519–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Payam Akhyari, Department of Cardiac Surgery, University Hospital of RWTH Aachen, Germany, for critical review of the manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AK and SL contributed equally as first authors. RZ and MAK contributed equally as last authors. AK wrote the first version of the manuscript and drafted it. RZ JS, AH, and MAK: concept and design. RZ, SL, and NH: resources and administration. AK, SL, and MS: data collection. AK, SL, NH, MAK, and RZ performed echocardiography. AK, MAK, and SL conducted the study. AK, SL, NH, and RZ: echocardiography analysis. AK, SL, RZ, and MAK: interpretation of data. AK, SL, RZ, and MS: visualization. AK and SL: statistical analysis. JS, RZ, and MAK: supervision. AK, SL, RZ, and MAK: methodology. All authors approved the final version of the manuscript for publication. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rashad Zayat.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolashov, A., Lotfi, S., Spillner, J. et al. Evaluation of myocardial work changes after lung resection—the significance of surgical approach: an echocardiographic comparison between VATS and thoracotomy. Gen Thorac Cardiovasc Surg (2024). https://doi.org/10.1007/s11748-023-02005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11748-023-02005-7

Keywords

Navigation