Skip to main content
Log in

Comparison of various lung intersegmental plane identification methods

  • Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Keeping a sufficient surgical margin free of tumor is important to prevent local recurrence in lung segmentectomy. Accurate identification of the intersegmental plane is essential to achieve adequate surgical margins. Traditionally, the inflation–deflation method was used to identify the intersegmental plane. However, in recent years, various intersegmental plane identification methods, including systemic indocyanine green injection, have been reported and shown to be useful. The purpose of this review was to evaluate the identification rates, advantages, and disadvantages of various intersegmental identification methods in lung segmentectomy. There are primarily six methods: inflation–deflation method, selective segmental inflation, endobronchial dye injection, virtual-assisted lung mapping, systemic indocyanine green injection, and pure oxygen method. These are broadly classified into those that use bronchi and pulmonary arteries anatomically and those that use air and dye technically. In this review, all methods showed relatively high identification rates. Moreover, high identification rates were expected, especially with systemic indocyanine green injection and the pure oxygen method. Each method has its advantages and disadvantages as varying situations entail different methods. It is necessary to select and apply them effectively; therefore, further improvement for each method will be required in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

JCOG:

Japanese Clinical Oncology Group

WJOG:

West Japan Oncology Group

CALGB:

Cancer and Leukemia Group B

ICG:

Indocyanine green

COPD:

Chronic obstructive pulmonary disease

VATS:

Video-assisted thoracic surgery

VAL-MAP:

Virtual-assisted lung mapping

N2O:

Nitrous oxide

References

  1. Cahan WG. Radical lobectomy. J Thorac Cardiovasc Surg. 1960;39:555–72.

    Article  CAS  Google Scholar 

  2. Churchill ED, Belsey R. Segmental pneumonectomy in bronchiectasis: the lingula segment of the left upper lobe. Ann Surg. 1939;109:481–99.

    Article  CAS  Google Scholar 

  3. Clagett OT, Deterling RA Jr. A technique for segmental pulmonary resection with particular reference to lingulectomy. J Thorac Surg. 1946;15:227–38.

    Article  CAS  Google Scholar 

  4. Overholt RH, Langer L. A new technique for pulmonary segmental resection; its application in the treatment of bronchiectasis. Surg Gynecol Obstet. 1947;84:257–68.

    CAS  Google Scholar 

  5. Ramsey BH. Conservation of tissue and function in pulmonary resection the technique of the anatomical separation of segments. Calif Med. 1952;76:333–6.

    CAS  Google Scholar 

  6. Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg. 1995;60:615–22.

    Article  CAS  Google Scholar 

  7. Schuchert MJ, Pettiford BL, Keeley S, D’Amato TA, Kilic A, Close J, et al. Anatomic segmentectomy in the treatment of stage I non-small cell lung cancer. Ann Thorac Surg. 2007;84:926–33.

    Article  Google Scholar 

  8. Okada M, Yoshikawa K, Hatta T, Tsubota N. Is segmentectomy with lymph node assessment an alternative to lobectomy for non-small cell lung cancer of 2 cm or smaller? Ann Thorac Surg. 2001;71:956–60.

    Article  CAS  Google Scholar 

  9. Aokage K, Yoshida J, Hishida T, Tsuboi M, Saji H, Okada M, et al. Limited resection for early-stage non-small cell lung cancer as function-preserving radical surgery: a review. Jpn J Clin Oncol. 2017;47:7–11.

    Article  Google Scholar 

  10. Mimae T, Okada M. Are segmentectomy and lobectomy comparable in terms of curative intent for early stage non-small cell lung cancer? Gen Thorac Cardiovasc Surg. 2020;68:703–6.

    Article  Google Scholar 

  11. Nakamura K, Saji H, Nakajima R, Okada M, Asamura H, Shibata T, et al. A phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn J Clin Oncol. 2010;40:271–4.

    Article  Google Scholar 

  12. Aokage K, Saji H, Suzuki K, Mizutani T, Katayama H, Shibata T, et al. A non-randomized confirmatory trial of segmentectomy for clinical T1N0 lung cancer with dominant ground glass opacity based on thin-section computed tomography (JCOG1211). Gen Thorac Cardiovasc Surg. 2017;65:267–72.

    Article  Google Scholar 

  13. Kohman LJ, Gu L, Altorki N, Scalzetti E, Veit LJ, Wallen JM, et al. Biopsy first: Lessons learned from Cancer and Leukemia Group B (CALGB) 140503. J Thorac Cardiovasc Surg. 2017;153:1592–7.

    Article  Google Scholar 

  14. Tsubota N. An improved method for distinguishing the intersegmental plane of the lung. Surg Today. 2000;30:963–4.

    Article  CAS  Google Scholar 

  15. Wang J, Xu X, Wen W, Wu W, Zhu Q, Chen L. Modified method for distinguishing the intersegmental border for lung segmentectomy. Thorac Cancer. 2018;9:330–3.

    Article  Google Scholar 

  16. Okada M, Mimura T, Ikegaki J, Katoh H, Itoh H, Tsubota N. A novel video-assisted anatomic segmentectomy technique: selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thorac Cardiovasc Surg. 2007;133:753–8.

    Article  Google Scholar 

  17. Kamiyoshihara M, Kakegawa S, Morishita Y. Convenient and improved method to distinguish the intersegmental plane in pulmonary segmentectomy using a butterfly needle. Ann Thorac Surg. 2007;83:1913–4.

    Article  Google Scholar 

  18. Kamiyoshihara M, Kakegawa S, Ibe T, Takeyoshi I. Butterfly-needle video-assisted thoracoscopic segmentectomy: a retrospective review and technique in detail. Innovations (Phila). 2009;4:326–30.

    Article  Google Scholar 

  19. Oizumi H, Kato H, Endoh M, Inoue T, Watarai H, Sadahiro M. Slip knot bronchial ligation method for thoracoscopic lung segmentectomy. Ann Thorac Surg. 2014;97:1456–8.

    Article  Google Scholar 

  20. Endoh M, Oizumi H, Kato H, Suzuki J, Watarai H, Hamada A, et al. How to demarcate intersegmental plane with resected-segments inflation method using the slip knot technique in thoracoscopic anatomic segmentectomy. J Vis Surg. 2017;3:100.

    Article  Google Scholar 

  21. Endoh M, Oizumi H, Kato H, Suzuki J, Watarai H, Hamada A, et al. Determination of the intersegmental plane using the slip-knot method. J Thorac Dis. 2018;10:S1222–8.

    Article  Google Scholar 

  22. Sekine Y, Ko E, Oishi H, Miwa M. A simple and effective technique for identification of intersegmental planes by infrared thoracoscopy after transbronchial injection of indocyanine green. J Thorac Cardiovasc Surg. 2012;143:1330–5.

    Article  Google Scholar 

  23. Zhang Z, Liao Y, Ai B, Liu C. Methylene blue staining: a new technique for identifying intersegmental planes in anatomic segmentectomy. Ann Thorac Surg. 2015;99:238–42.

    Article  Google Scholar 

  24. Sato M, Omasa M, Chen F, Sato T, Sonobe M, Bando T, et al. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg. 2014;147:1813–9.

    Article  Google Scholar 

  25. Sato M, Yamada T, Menju T, Aoyama A, Sato T, Chen F, et al. Virtual-assisted lung mapping: outcome of 100 consecutive cases in a single institute. Eur J Cardiothorac Surg. 2015;47:e131–9.

    Article  Google Scholar 

  26. Sato M, Murayama T, Nakajima J. Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP). J Thorac Dis. 2016;8:S716–30.

    Article  Google Scholar 

  27. Yang SM, Lin CK, Chen LW, Chen YC, Huang HC, Ko HJ, et al. Combined virtual-assisted lung mapping (VAL-MAP) with CT-guided localization in thoracoscopic pulmonary segmentectomy. Asian J Surg. 2019;42:488–94.

    Article  Google Scholar 

  28. Misaki N, Chang SS, Gotoh M, Yamamoto Y, Satoh K, Yokomise H. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg. 2009;138:613–8.

    Article  Google Scholar 

  29. Misaki N, Chang SS, Igai H, Tarumi S, Gotoh M, Yokomise H. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg. 2010;140:752–6.

    Article  Google Scholar 

  30. Kasai Y, Tarumi S, Chang SS, Misaki N, Gotoh M, Go T, et al. Clinical trial of new methods for identifying lung intersegmental borders using infrared thoracoscopy with indocyanine green: comparative analysis of 2- and 1-wavelength methods. Eur J Cardiothorac Surg. 2013;44:1103–7.

    Article  Google Scholar 

  31. Tarumi S, Misaki N, Kasai Y, Chang SS, Go T, Yokomise H. Clinical trial of video-assisted thoracoscopic segmentectomy using infrared thoracoscopy with indocyanine green. Eur J Cardiothorac Surg. 2014;46:112–5.

    Article  Google Scholar 

  32. Guigard S, Triponez F, Bedat B, Vidal-Fortuny J, Licker M, Karenovics W. Usefulness of near-infrared angiography for identifying the intersegmental plane and vascular supply during video-assisted thoracoscopic segmentectomy. Interact Cardiovasc Thorac Surg. 2017;25:703–9.

    Article  Google Scholar 

  33. Mun M, Okumura S, Nakao M, Matsuura Y, Nakagawa K. Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy. J Vis Surg. 2017;3:80.

    Article  Google Scholar 

  34. Bedat B, Triponez F, Sadowski SM, Ellenberger C, Licker M, Karenovics W. Impact of near-infrared angiography on the quality of anatomical resection during video-assisted thoracic surgery segmentectomy. J Thorac Dis. 2018;10:S1229–34.

    Article  Google Scholar 

  35. Pischik VG, Kovalenko A. The role of indocyanine green fluorescence for intersegmental plane identification during video-assisted thoracoscopic surgery segmentectomies. J Thorac Dis. 2018;10:S3704–11.

    Article  Google Scholar 

  36. Iizuka S, Kuroda H, Yoshimura K, Dejima H, Seto K, Naomi A, et al. Predictors of indocyanine green visualization during fluorescence imaging for segmental plane formation in thoracoscopic anatomical segmentectomy. J Thorac Dis. 2016;8:985–91.

    Article  Google Scholar 

  37. Kuroda H, Yoshida T, Arimura T, Mizuno T, Sakakura N, Sakao Y. Novel development of Spectra-A using indocyanine green for segmental boundary visibility in thoracoscopic segmentectomy. J Surg Res. 2018;227:228–33.

    Article  Google Scholar 

  38. Iwata H, Shirahashi K, Mizuno Y, Matsui M, Takemura H. Surgical technique of lung segmental resection with two intersegmental planes. Interact Cardiovasc Thorac Surg. 2013;16:423–5.

    Article  Google Scholar 

  39. Yang W, Liu Z, Yang C, Liu S, Guo M, Wen W, et al. Combination of nitrous oxide and the modified inflation-deflation method for identifying the intersegmental plane in segmentectomy: a randomized controlled trial. Thorac Cancer. 2021;12:1398–406.

    Article  Google Scholar 

  40. Liu Z, Yang R, Cao H. Near-infrared intraoperative imaging with indocyanine green is beneficial in video-assisted thoracoscopic segmentectomy for patients with chronic lung diseases: a retrospective single-center propensity-score matched analysis. J Cardiothorac Surg. 2020;15:303.

    Article  Google Scholar 

  41. Yotsukura M, Okubo Y, Yoshida Y, Nakagawa K, Watanabe S-I. Indocyanine green imaging for pulmonary segmentectomy. JTCVS Techniques. 2021;6:151–8.

    Article  Google Scholar 

  42. Fu HH, Feng Z, Li M, Wang H, Ren WG, Peng ZM. The arterial-ligation-alone method for identifying the intersegmental plane during thoracoscopic anatomic segmentectomy. J Thorac Dis. 2020;12:2343–51.

    Article  Google Scholar 

  43. Andolfi M, Potenza R, Seguin-Givelet A, Gossot D. Identification of the intersegmental plane during thoracoscopic segmentectomy: state of the art. Interact Cardiovasc Thorac Surg. 2020;30:329–36.

    Article  Google Scholar 

  44. Sakamoto K, Kanzaki M, Mitsuboshi S, Maeda H, Kikkawa T, Isaka T, et al. A novel and simple method for identifying the lung intersegmental plane using thermography. Interact Cardiovasc Thorac Surg. 2016;23:171–3.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception and design: KO, MT. (II) Administrative support: JS, TM, KT, JS, KA, MT. (III) Provision of study materials or patients: KO, JS. (IV) Collection and assembly of data: KO. (V) Data analysis and interpretation: KO. (VI) Manuscript writing: All authors. (VII) Final approval of manuscript: All authors.

Corresponding author

Correspondence to Ken Onodera.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare. All authors have completed the ICMJE uniform disclosure form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onodera, K., Suzuki, J., Miyoshi, T. et al. Comparison of various lung intersegmental plane identification methods. Gen Thorac Cardiovasc Surg 71, 90–97 (2023). https://doi.org/10.1007/s11748-022-01885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-022-01885-5

Keywords

Navigation