Skip to main content
Log in

Circular RNA circ_0001445 alleviates the ox-LDL-induced endothelial injury in human primary aortic endothelial cells through regulating ABCG1 via acting as a sponge of miR-208b-5p

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Background

Coronary artery disease (CAD) originates from the blockage of the inner walls of the coronary arteries due to a plaque buildup. Circular RNA (circRNA) circ_0001445 has been reported to be downregulated in patients with a higher coronary atherosclerotic burden. This study is designed to explore the role and mechanism of circ_0001445 on the oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell damage.

Methods

Circ_0001445, microRNA-208b-5p (miR-208b-5p), and ATP-binding cassette sub-family G member 1 (ABCG1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Inflammatory cytokines levels, cell viability, proliferation, migration were detected by Enzyme-linked immunosorbent assay (ELISA) kits, Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), and transwell assays, respectively. Protein levels were determined by western blot assay. The binding between miR-208b-5p and circ_0001445 or ABCG1 was predicted by circBank or TargetScan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), and RNA pull-down assays.

Results

Circ_0001445 and ABCG1 were decreased, and miR-208b-5p was increased in CAD patients and ox-LDL-treated HAECs. Also, circ_0001445 overexpression could weaken ox-LDL-triggered HAEC injury by boosting proliferation, migration, and repressing inflammation and extracellular matrix (ECM). Mechanically, circ_0001445 directly targeted miR-208b-5p. Furthermore, miR-208b-5p mediated the modulation of circ_0001445 in ox-LDL-induced HAEC injury. ABCG1 acted as a direct target of miR-208b-5p, and the downregulation of miR-208b-5p relieved ox-LDL-induced HAEC damage by interacting with ABCG1. Additionally, circ_0001445 regulated ABCG1 expression by sponging miR-208b-5p.

Conclusion

Circ_0001445 could abate ox-LDL-mediated HAEC damage by the miR-208b-5p/ABCG1 axis, providing a novel insight into the pathogenesis and treatment of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Malakar AK, Choudhury D, Halder B, et al. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–23. https://doi.org/10.1002/jcp.28350.

    Article  CAS  PubMed  Google Scholar 

  2. McCullough PA. Coronary artery disease. Clin J Am Soc Nephrol. 2007;2(3):611–6. https://doi.org/10.2215/cjn.03871106.

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study. Lancet Public Health. 2020;5(12):e672–81. https://doi.org/10.1016/s2468-2667(20)30191-2.

    Article  PubMed  Google Scholar 

  4. Liu L. Cardiovascular diseases in China. Biochem Cell Biol. 2007;85(2):157–63. https://doi.org/10.1139/o07-004.

    Article  PubMed  Google Scholar 

  5. Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66. https://doi.org/10.1161/circresaha.114.302721.

    Article  CAS  PubMed  Google Scholar 

  6. Ishida M, Sakuma H. Magnetic resonance of coronary arteries: assessment of luminal narrowing and blood flow in the coronary arteries. J Thorac Imaging. 2014;29(3):155–62. https://doi.org/10.1097/rti.0000000000000081.

    Article  PubMed  Google Scholar 

  7. Maiolino G, Rossitto G, Caielli P, et al. The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm. 2013. https://doi.org/10.1155/2013/714653.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Mohamed AS, Zhou SH. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis. 2012;11:85. https://doi.org/10.1186/1476-511x-11-85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao X, Zhang HW, Sun D, et al. Relation of oxidized-low-density lipoprotein and high-density lipoprotein subfractions in non-treated patients with coronary artery disease. Prostaglandins Other Lipid Mediat. 2019;144: 106345. https://doi.org/10.1016/j.prostaglandins.2019.106345.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YH, He K, Shi G. Effects of microRNA-499 on the inflammatory damage of endothelial cells during coronary artery disease via the targeting of PDCD4 through the NF-Κβ/TNF-α signaling pathway. Cell Physiol Biochem. 2017;44(1):110–24. https://doi.org/10.1159/000484588.

    Article  PubMed  Google Scholar 

  11. Zhang C, Ge S, Gong W, et al. LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis. 2020;11(6):435. https://doi.org/10.1038/s41419-020-2645-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng Y, Calin GA. Crucial role of non-coding RNAs in disease. Cancer Lett. 2018. https://doi.org/10.1016/j.canlet.2018.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct. 2015;33(1):14–22. https://doi.org/10.1002/cbf.3079.

    Article  CAS  PubMed  Google Scholar 

  14. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. https://doi.org/10.1038/nature05874.

    Article  CAS  PubMed  Google Scholar 

  15. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  16. Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015;4: e07540. https://doi.org/10.7554/eLife.07540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. Embo J. 2019;38(16):e100836. https://doi.org/10.1525/embj.2018100836.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharm Ther. 2018;187:31–44. https://doi.org/10.1016/j.pharmthera.2018.01.010.

    Article  CAS  Google Scholar 

  19. Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234(5):5588–600. https://doi.org/10.1002/jcp.27384.

    Article  CAS  PubMed  Google Scholar 

  20. Pan RY, Zhao CH, Yuan JX, et al. Circular RNA profile in coronary artery disease. Am J Transl Res. 2019;11(11):7115–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Shen C, Wang Y, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis. 2019;286:88–96. https://doi.org/10.1016/j.atherosclerosis.2019.05.006.

    Article  CAS  PubMed  Google Scholar 

  22. Gao Y, Li G, Fan S, et al. Circ_0093887 upregulates CCND2 and SUCNR1 to inhibit the ox-LDL-induced endothelial dysfunction in atherosclerosis by functioning as a miR-876–3p sponge. Clin Exp Pharm Physiol. 2021. https://doi.org/10.1111/1440-1681.13504.

    Article  Google Scholar 

  23. Vilades D, Martínez-Camblor P, Ferrero-Gregori A, et al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. Faseb j. 2020;34(3):4403–14. https://doi.org/10.1096/fj.201902507R.

    Article  CAS  PubMed  Google Scholar 

  24. Cai Y, Xu L, Xu C, et al. Hsa_circ_0001445 inhibits ox-LDL-induced HUVECs inflammation, oxidative stress and apoptosis by regulating miRNA-640. Perfusion. 2020. https://doi.org/10.1177/0267659120979472.

    Article  PubMed  Google Scholar 

  25. Su Q, Lv X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics. 2020;112(2):1680–5. https://doi.org/10.1016/j.ygeno.2019.10.006.

    Article  CAS  PubMed  Google Scholar 

  26. Panda AC. Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. 2018;1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6.

    Article  CAS  PubMed  Google Scholar 

  27. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. https://doi.org/10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Li T, Gao L, et al. Plasma miR-208b and miR-499: potential biomarkers for severity of coronary artery disease. Dis Mark. 2019. https://doi.org/10.1155/2019/9842427.

    Article  Google Scholar 

  29. Zhou Q, Schötterl S, Backes D, et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. Int J Cardiol. 2017;230:634–41. https://doi.org/10.1016/j.ijcard.2016.12.171.

    Article  PubMed  Google Scholar 

  30. López-Jiménez E, Rojas AM, Andrés-León E. RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol. 2018;1087:17–33. https://doi.org/10.1007/978-981-13-1426-1_2.

    Article  CAS  PubMed  Google Scholar 

  31. Sekar S, Geiger P, Cuyugan L, et al. Identification of circular RNAs using RNA sequencing. J Vis Exp. 2019. https://doi.org/10.3791/59981.

    Article  PubMed  Google Scholar 

  32. Santer L, Bär C, Thum T. Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol Ther. 2019;27(8):1350–63. https://doi.org/10.1016/j.ymthe.2019.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ojha R, Nandani R, Chatterjee N, et al. Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv Exp Med Biol. 2018;1087:141–57. https://doi.org/10.1007/978-981-13-1426-1_12.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Wang W, Wu X, et al. Regulatory roles of circular rnas in coronary artery disease. Mol Ther Nucleic Acids. 2020. https://doi.org/10.1016/j.omtn.2020.05.024.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bach LA. Endothelial cells and the IGF system. J Mol Endocrinol. 2015;54(1):R1-13. https://doi.org/10.1530/jme-14-0215.

    Article  CAS  PubMed  Google Scholar 

  36. Suna G, Wojakowski W, Lynch M, et al. Extracellular matrix proteomics reveals interplay of aggrecan and aggrecanases in vascular remodeling of stented coronary arteries. Circulation. 2018;137(2):166–83. https://doi.org/10.1161/circulationaha.116.023381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nielsen SH, Mygind ND, Michelsen MM, et al. Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: an iPOWER substudy. Eur J Prev Cardiol. 2018;25(7):719–27. https://doi.org/10.1177/2047487318758750.

    Article  PubMed  Google Scholar 

  38. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52. https://doi.org/10.1038/nature12986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corsten MF, Dennert R, Jochems S, et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499–506. https://doi.org/10.1161/circgenetics.110.957415.

    Article  PubMed  Google Scholar 

  40. Liu X, Yuan L, Chen F, et al. Circulating miR-208b: a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction. Clin Lab. 2017;63(1):101–9. https://doi.org/10.7754/Clin.Lab.2016.160632.

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg L, Tirosh-Wagner T, Vardi A, et al. Circulating microRNAs: a potential biomarker for cardiac damage, inflammatory response, and left ventricular function recovery in pediatric viral myocarditis. J Cardiovasc Transl Res. 2018;11(4):319–28. https://doi.org/10.1007/s12265-018-9814-0.

    Article  PubMed  Google Scholar 

  42. Pandzic E, Gelissen IC, Whan R, et al. The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep. 2017. https://doi.org/10.1038/srep42025.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hutchins PM, Heinecke JW. Cholesterol efflux capacity, macrophage reverse cholesterol transport and cardioprotective HDL. Curr Opin Lipidol. 2015;26(5):388–93. https://doi.org/10.1097/mol.0000000000000209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rafiei A, Ferns GA, Ahmadi R, et al. Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life. 2021;73(1):223–37. https://doi.org/10.1002/iub.2421.

    Article  CAS  PubMed  Google Scholar 

  45. Rosenson RS, Brewer HB Jr, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60. https://doi.org/10.1038/nrcardio.2015.124.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The present study was approved by the ethical review committee of 920 Hospital of Joint Logistics Support Force. Written informed consent was obtained from all enrolled patients.

Consent for publication

Patients agree to participate in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 270 KB)

11748_2022_1799_MOESM2_ESM.tif

Supplementary file2 (TIF 1504 KB) Figure S1 circ_0001445 expression was reduced in CAD patients. (A) RT-qPCR analysis of circ_0001445 expression in serum samples from 26 healthy volunteers and 44 CAD patients (24 Angina pectoris, 6 Myocardial infarction, 9 Asymptomatic myocardial ischemia, 7 Ischemic cardiomyopathy, 4 Sudden death coronary heart disease). (B) ROC curve analysis for the diagnostic value evaluation of circ_0001445 in CAD patients. **P <0.01, ***P <0.001. Figure S2 The effects of circ_0001445 knockdown ox-LDL-mediated inflammatory response, proliferation, migration, and ECM in HAECs. (A) RT-qPCR assay was used to detect circ_0001445 level in HAECs transfected with sh-NC or sh-circ_0001445. (B-G) HAEC were treated with control, ox-LDL, ox-LDL+sh-NC, and ox-LDL+sh-circ_0001445. (B and C) ELISA was adopted for the secretions of TNF-α and IL-6 in treated HAECs. (D and E) Cell proliferative ability was assessed using CCK-8 assay and EdU assay in treated HAECs. (F) Migration ability was detected using Transwell assay in treated HAECs. (G) Protein levels of Collagen type II, MMP13, ADAMTS4 in treated HAECs were determined using western blot assay. **P <0.01, ***P <0.001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liang, X. & Yang, L. Circular RNA circ_0001445 alleviates the ox-LDL-induced endothelial injury in human primary aortic endothelial cells through regulating ABCG1 via acting as a sponge of miR-208b-5p. Gen Thorac Cardiovasc Surg 70, 779–792 (2022). https://doi.org/10.1007/s11748-022-01799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-022-01799-2

Keywords

Navigation