Skip to main content

Advertisement

Log in

Sternal wound closure in the current era: the need of a tailored approach

  • Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objective

Median sternotomy remains the most common access to perform cardiac surgery procedures. However, the experience of the operating surgeon remains a crucial factor during sternal closure to avoid potential complications related to poor sternal healing, such as mediastinitis. Considering the lack of major randomized controlled trials and the heterogeneity of the current literature, this narrative review aims to summarize the different techniques and approaches to sternal closure with the aim to investigate their reflections into clinical outcomes and to inform the choice on the most effective closure method after median sternotomy.

Methods

A literature search through PubMed, Embase, EBSCO, Cochrane database of systematic reviews, and Web of Science from its inception up to April 2019 using the following search keywords in various combinations: sternal, sternotomy, mediastinitis, deep sternal wound infection, cardiac surgery, closure.

Results

Single wire fixation methods, at present, seems the most useful method to perform sternal closure in routine patients, although patients with a fragile sternum might benefit more from a figure-of-eight technique. In high-risk patients (e.g. chronic pulmonary disease, obesity, bilateral internal mammary artery harvesting, diabetes, off-midline sternotomy), rigid plate fixation is currently the most effective method, if available; alternatively, weave techniques could be used.

Conclusion

The choice among the sternal closure techniques should be mainly inspired and tailored on the patient’s characteristics, and correct judgement and experience play a pivotal role. A decisional algorithm has been proposed as an attempt to overcome the absence of specific guidelines and to guide the operative approach. This operative approach might be used also in non-cardiac procedure in which median sternotomy is required, such as in case of thoracic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mack M, Taggart D (2018) Coronary revascularization should be a subspecialty focus in cardiac surgery. J Thorac Cardiovasc Surg (ahead of print). Doi: 10.1016/j.jtcvs.2018.08.078.

    Article  Google Scholar 

  2. Head SJ, Kappetein AP. Coronary bypass surgery: an ART for dedicated surgeons. N Engl J Med. 2019;380:489–91. https://doi.org/10.1056/NEJMe1814681.

    Article  PubMed  Google Scholar 

  3. Lazar HL, Salm TV, Engelman R, Orgill D, Gordon S. Prevention and management of sternal wound infections. J Thorac Cardiovasc Surg. 2016;152:962–72. https://doi.org/10.1016/j.jtcvs.2016.01.060.

    Article  PubMed  Google Scholar 

  4. Lazar HL. The risk of mediastinitis and deep sternal wound infections with single and bilateral, pedicled and skeletonized internal thoracic arteries. Ann Cardiothorac Surg. 2018;7:663–72. https://doi.org/10.21037/acs.2018.06.11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, Yang M, Cohen DJ, Rosenberg Y, Solomon SD, Desai AS, Gersh BJ, Magnuson EA, Lansky A, Boineau R, Weinberger J, Ramanathan K, Sousa JE, Rankin J, Bhargava B, Buse J, Hueb W, Smith CR, Muratov V, Bansilal S, King S 3rd, Bertrand M, Fuster V. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84. https://doi.org/10.1056/NEJMoa1211585.

    Article  CAS  PubMed  Google Scholar 

  6. Friberg O, Dahlin LG, Soderquist B, Kallman J, Svedjeholm R. Influence of more than six sternal fixation wires on the incidence of deep sternal wound infection. Thorac Cardiovasc Surg. 2006;54:468–73. https://doi.org/10.1055/s-2006-924437.

    Article  CAS  PubMed  Google Scholar 

  7. McGregor WE, Trumble DR, Magovern JA. Mechanical analysis of midline sternotomy wound closure. J Thorac Cardiovasc Surg. 1999;117:1144–50.

    Article  CAS  PubMed  Google Scholar 

  8. Losanoff JE, Basson MD, Gruber SA, Huff H, Hsieh FH. Single wire versus double wire loops for median sternotomy closure: experimental biomechanical study using a human cadaveric model. Ann Thorac Surg. 2007;84:1288–93. https://doi.org/10.1016/j.athoracsur.2007.05.023.

    Article  PubMed  Google Scholar 

  9. Kiessling AH, Isgro F, Weisse U, Moltner A, Saggau W, Boldt J. Advanced sternal closure to prevent dehiscence in obese patients. Ann Thorac Surg. 2005;80:1537–9. https://doi.org/10.1016/j.athoracsur.2004.04.050.

    Article  PubMed  Google Scholar 

  10. Sharma R, Puri D, Panigrahi BP, Virdi IS. A modified parasternal wire technique for prevention and treatment of sternal dehiscence. Ann Thorac Surg. 2004;77:210–3.

    Article  PubMed  Google Scholar 

  11. Ramzisham AR, Raflis AR, Khairulasri MG, OoiSuMin J, Fikri AM, Zamrin MD. Figure-of-eight vs. interrupted sternal wire closure of median sternotomy. Asian Cardiovasc Thorac Ann. 2009;17:587–91. https://doi.org/10.1177/0218492309348948.

    Article  PubMed  Google Scholar 

  12. Losanoff JE, Jones JW, Richman BW. Primary closure of median sternotomy: techniques and principles. Cardiovasc Surg. 2002;10:102–10.

    Article  PubMed  Google Scholar 

  13. Khasati N, Sivaprakasam R, Dunning J. Is the figure-of-eight superior to the simple wire technique for closure of the sternum? Interact Cardiovasc Thorac Surg. 2004;3:191–4. https://doi.org/10.1016/s1569-9293(03)00259-7.

    Article  PubMed  Google Scholar 

  14. Almdahl SM, Halvorsen P, Veel T, Rynning SE. Avoidance of noninfectious sternal dehiscence: figure-of-8 wiring is superior to straight wire closure. Scand Cardiovasc J. 2013;47:247–50. https://doi.org/10.3109/14017431.2012.761723.

    Article  PubMed  Google Scholar 

  15. Vos RJ, Van Putte BP, Kloppenburg GTL. Prevention of deep sternal wound infection in cardiac surgery: a literature review. J Hosp Infect. 2018;100:411–20. https://doi.org/10.1016/j.jhin.2018.05.026.

    Article  CAS  PubMed  Google Scholar 

  16. RF Marco Di Jr, Lee MW, Bekoe S, Grant KJ, Woelfel GF, Pellegrini RV (1989) Interlocking figure-of-8 closure of the sternum. Ann Thorac Surg 47 927–929

  17. Pinotti KF, Cataneo DC, Rodrigues OR, Cataneo AJM. Closure of the sternum with anchoring of the steel wires: systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2018;156:178–86. https://doi.org/10.1016/j.jtcvs.2018.02.033.

    Article  PubMed  Google Scholar 

  18. Schimmer C, Sommer SP, Bensch M, Bohrer T, Aleksic I, Leyh R. Sternal closure techniques and postoperative sternal wound complications in elderly patients. Eur J Cardiothorac Surg. 2008;34:132–8. https://doi.org/10.1016/j.ejcts.2008.04.006.

    Article  PubMed  Google Scholar 

  19. Narang S, Banerjee A, Satsangi DK, Geelani MA. Sternal weave in high-risk patients to prevent noninfective sternal dehiscence. Asian Cardiovasc Thorac Ann. 2009;17:167–70. https://doi.org/10.1177/0218492309103306.

    Article  PubMed  Google Scholar 

  20. Losanoff JE, Richman BW, Jones JW. Disruption and infection of median sternotomy: a comprehensive review. Eur J Cardiothorac Surg. 2002;21:831–9.

    Article  PubMed  Google Scholar 

  21. Franco S, Herrera AM, Atehortua M, Velez L, Botero J, Jaramillo JS, Velez JF, Fernandez H. Use of steel bands in sternotomy closure: implications in high-risk cardiac surgical population. Interact Cardiovasc Thorac Surg. 2009;8:200–5. https://doi.org/10.1510/icvts.2008.188136.

    Article  PubMed  Google Scholar 

  22. Bhattacharya S, Sau I, Mohan M, Hazari K, Basu R, Kaul A. Sternal bands for closure of midline sternotomy leads to better wound healing. Asian Cardiovasc Thorac Ann. 2007;15:59–63. https://doi.org/10.1177/021849230701500113.

    Article  PubMed  Google Scholar 

  23. Riess FC, Awwad N, Hoffmann B, Bader R, Helmold HY, Loewer C, Riess AG, Bleese N. A steel band in addition to 8 wire cerclages reduces the risk of sternal dehiscence after median sternotomy. Heart Surg Forum. 2004;7:387–92. https://doi.org/10.1532/hsf98.200403114.

    Article  PubMed  Google Scholar 

  24. Marasco SF, Fuller L, Zimmet A, McGiffin D, Seitz M, Ch'ng S, Gangahanumaiah S, Bailey M. Prospective, randomized, controlled trial of polymer cable ties versus standard wire closure of midline sternotomy. J Thorac Cardiovasc Surg. 2018;156(1589–1595):e1581. https://doi.org/10.1016/j.jtcvs.2018.04.025.

    Article  Google Scholar 

  25. Ozaki W, Buchman SR, Iannettoni MD, Frankenburg EP. Biomechanical study of sternal closure using rigid fixation techniques in human cadavers. Ann Thorac Surg. 1998;65:1660–5.

    Article  CAS  PubMed  Google Scholar 

  26. Raman J, Song DH, Bolotin G, Jeevanandam V. Sternal closure with titanium plate fixation–a paradigm shift in preventing mediastinitis. Interact Cardiovasc Thorac Surg. 2006;5:336–9. https://doi.org/10.1510/icvts.2005.121863.

    Article  PubMed  Google Scholar 

  27. Pai S, Gunja NJ, Dupak EL, McMahon NL, Roth TP, Lalikos JF, Dunn RM, Francalancia N, Pins GD, Billiar KL. In vitro comparison of wire and plate fixation for midline sternotomies. Ann Thorac Surg. 2005;80:962–8. https://doi.org/10.1016/j.athoracsur.2005.03.089.

    Article  PubMed  Google Scholar 

  28. Song DH, Lohman RF, Renucci JD, Jeevanandam V, Raman J. Primary sternal plating in high-risk patients prevents mediastinitis. Eur J Cardiothorac Surg. 2004;26:367–72. https://doi.org/10.1016/j.ejcts.2004.04.038.

    Article  PubMed  Google Scholar 

  29. Elghonemy Y, Hussein M. Titanium plate fixation versus wire sternal closure in coronary artery bypass graft patients: Need for rigid sternal fixation. J Egyptian Soc Cardio-Thoracic Surg. 2016;24:150–8.

    Article  Google Scholar 

  30. Snyder CW, Graham LA, Byers RE, Holman WL. Primary sternal plating to prevent sternal wound complications after cardiac surgery: early experience and patterns of failure. Interact Cardiovasc Thorac Surg. 2009;9:763–6. https://doi.org/10.1510/icvts.2009.214023.

    Article  PubMed  Google Scholar 

  31. Allen KB, Thourani VH, Naka Y, Grubb KJ, Grehan J, Patel N, Guy TS, Landolfo K, Gerdisch M, Bonnell M, Cohen DJ. Randomized, multicenter trial comparing sternotomy closure with rigid plate fixation to wire cerclage. J Thorac Cardiovasc Surg. 2017;153(888–896):e881. https://doi.org/10.1016/j.jtcvs.2016.10.093.

    Article  Google Scholar 

  32. Tam DY, Nedadur R, Yu M, Yanagawa B, Fremes SE, Friedrich JO. Rigid plate fixation versus wire cerclage for sternotomy after cardiac surgery: a meta-analysis. Ann Thorac Surg. 2018;106:298–304. https://doi.org/10.1016/j.athoracsur.2018.02.043.

    Article  PubMed  Google Scholar 

  33. Cataneo DC, Dos Reis TA, Felisberto G Jr, Rodrigues OR, Cataneo AJM. New sternal closure methods versus the standard closure method: systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2018. https://doi.org/10.1093/icvts/ivy281.

    Article  Google Scholar 

  34. Kreter B, Woods M. Antibiotic prophylaxis for cardiothoracic operations. Meta-analysis of thirty years of clinical trials. J Thorac Cardiovasc Surg. 1992;104:590–9.

    CAS  PubMed  Google Scholar 

  35. Westberg M, Frihagen F, Brun OC, Figved W, Grogaard B, Valland H, Wangen H, Snorrason F. Effectiveness of gentamicin-containing collagen sponges for prevention of surgical site infection after hip arthroplasty: a multicenter randomized trial. Clin Infect Dis. 2015;60:1752–9. https://doi.org/10.1093/cid/civ162.

    Article  PubMed  Google Scholar 

  36. Friberg O, Svedjeholm R, Soderquist B, Granfeldt H, Vikerfors T, Kallman J. Local gentamicin reduces sternal wound infections after cardiac surgery: a randomized controlled trial. Ann Thorac Surg. 2005;79:153–61. https://doi.org/10.1016/j.athoracsur.2004.06.043 discussion 161-152.

    Article  PubMed  Google Scholar 

  37. Friberg O, Dahlin LG, Kallman J, Kihlstrom E, Soderquist B, Svedjeholm R. Collagen-gentamicin implant for prevention of sternal wound infection; long-term follow-up of effectiveness. Interact Cardiovasc Thorac Surg. 2009;9:454–8. https://doi.org/10.1510/icvts.2009.207514.

    Article  PubMed  Google Scholar 

  38. Konstantelias AA, Polyzos KA, Falagas ME. Gentamicin-collagen sponges for the prevention of surgical site infections: a meta-analysis of randomized controlled trials. Surg Infect (Larchmt). 2016;17:601–9. https://doi.org/10.1089/sur.2016.025.

    Article  Google Scholar 

  39. Caimmi PP, Sabbatini M, Kapetanakis EI, Cantone S, Ferraz MV, Cannas M, Tesler UF. A randomized trial to assess the contribution of a novel thorax support vest (Corset) in preventing mechanical complications of median sternotomy. Cardiol Ther. 2017;6:41–51. https://doi.org/10.1007/s40119-016-0078-y.

    Article  PubMed  Google Scholar 

  40. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60. https://doi.org/10.1002/term.24.

    Article  CAS  PubMed  Google Scholar 

  41. Sohier J, Moroni L, van Blitterswijk C, de Groot K, Bezemer JM. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering. Expert Opin Drug Deliv. 2008;5:543–66. https://doi.org/10.1517/17425247.5.5.543.

    Article  CAS  PubMed  Google Scholar 

  42. Spadaccio C, Rainer A, Trombetta M, Vadala G, Chello M, Covino E, Denaro V, Toyoda Y, Genovese JA. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng. 2009;37:1376–89. https://doi.org/10.1007/s10439-009-9704-3.

    Article  PubMed  Google Scholar 

  43. Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A. 2005;73:398–408. https://doi.org/10.1002/jbm.a.30284.

    Article  CAS  PubMed  Google Scholar 

  44. Rainer A, Spadaccio C, Sedati P, De Marco F, Carotti S, Lusini M, Vadala G, Di Martino A, Morini S, Chello M, Covino E, Denaro V, Trombetta M. Electrospun hydroxyapatite-functionalized PLLA scaffold: potential applications in sternal bone healing. Ann Biomed Eng. 2011;39:1882–900. https://doi.org/10.1007/s10439-011-0289-2.

    Article  PubMed  Google Scholar 

  45. Steigman SA, Ahmed A, Shanti RM, Tuan RS, Valim C, Fauza DO. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44:1120–6. https://doi.org/10.1016/j.jpedsurg.2009.02.038 discussion 1126.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koshiyama H, Yamazaki K. Absorbable sternal pins improve sternal closure stability within a small deviation. Gen Thorac Cardiovasc Surg. 2015;63:331–4. https://doi.org/10.1007/s11748-015-0533-z.

    Article  PubMed  Google Scholar 

  47. Fu XM, Oshima H, Araki Y, Narita Y, Mutsuga M, Okada N, Tsunekawa T, Usui A. A comparative study of two types of sternal pins used for sternal closure: poly-L-lactide sternal pins versus uncalcined hydroxyapatite poly-L-lactide sternal pins. J Artif Organs. 2013;16:458–63. https://doi.org/10.1007/s10047-013-0727-z.

    Article  CAS  PubMed  Google Scholar 

  48. Saito T, Iguchi A, Sakurai M, Tabayashi K. Biomechanical study of a poly-L-lactide (PLLA) sternal pin in sternal closure after cardiothoracic surgery. Ann Thorac Surg. 2004;77:684–7. https://doi.org/10.1016/s0003-4975(03)01341-9.

    Article  PubMed  Google Scholar 

  49. Kawamura M, Masai T, Matsue H, Yoshikawa Y, Sawa Y. Analysis of the sternum for sternal closure with bioabsorbable sternal pins. Asian Cardiovasc Thorac Ann. 2013;21:331–4. https://doi.org/10.1177/0218492312460772.

    Article  PubMed  Google Scholar 

  50. Tsunekawa T, Usui A, Oshima H, Mizutani S, Araki Y, Okada N, Ueda Y. A bioresorbable osteosynthesis device can induce an earlier sternal fusion after median sternotomy. Interact Cardiovasc Thorac Surg. 2012;15:377–81. https://doi.org/10.1093/icvts/ivs151.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ando M. Effect of internal fixation of the sternum using bioabsorbable pins in small children. J Card Surg. 2019. https://doi.org/10.1111/jocs.14174.

    Article  PubMed  Google Scholar 

  52. Fedak PW, Kolb E, Borsato G, Frohlich DE, Kasatkin A, Narine K, Akkarapaka N, King KM. Kryptonite bone cement prevents pathologic sternal displacement. Ann Thorac Surg. 2010;90:979–85. https://doi.org/10.1016/j.athoracsur.2010.05.009.

    Article  PubMed  Google Scholar 

  53. Spooner AJ, Mewhort HEM, DiFrancesco LM, Fedak PWM. Adhesive-enhanced sternal closure: feasibility and safety of late sternal reentry. Case Rep Surg. 2017;2017:8605313. https://doi.org/10.1155/2017/8605313.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bayramoglu Z, Durak Y, Bayram M, Ulusoy OL, Caynak B, Sagbas E, Akpinar B. Bone cement-enhanced sternal closure technique in cardiac surgery: effects on sternal union, pain and life quality. Case Rep Surg. 2013;8:182. https://doi.org/10.1155/2017/8605313.

    Article  Google Scholar 

  55. Trowbridge CC, Stammers AH, Woods E, Yen BR, Klayman M, Gilbert C. Use of platelet gel and its effects on infection in cardiac surgery. J Extra Corpor Technol. 2005;37:381–6.

    PubMed  PubMed Central  Google Scholar 

  56. Vang SN, Brady CP, Christensen KA, Allen KR, Anderson JE, Isler JR, Holt DW, Smith LM. Autologous platelet gel in coronary artery bypass grafting: effects on surgical wound healing. J Extra Corpor Technol. 2007;39:31–8.

    PubMed  PubMed Central  Google Scholar 

  57. Englert SJ, Estep TH, Ellis-Stoll CC. Autologous platelet gel applications during cardiovascular surgery: effect on wound healing. J Extra Corpor Technol. 2005;37:148–52.

    PubMed  PubMed Central  Google Scholar 

  58. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Juni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO, Group ESCSD. ESC/EACTS guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2018;2019(55):4–90. https://doi.org/10.1093/ejcts/ezy289.

    Article  Google Scholar 

  59. Gaudino M, Lorusso R, Rahouma M, Abouarab A, Tam DY, Spadaccio C, Saint-Hilary G, Leonard J, Iannaccone M, D'Ascenzo F, Di Franco A, Soletti G, Kamel MK, Lau C, Girardi LN, Schwann TA, Benedetto U, Taggart DP, Fremes SE. Radial artery versus right internal thoracic artery versus saphenous vein as the second conduit for coronary artery bypass surgery: a network meta-analysis of clinical outcomes. J Am Heart Assoc. 2019;8:e010839. https://doi.org/10.1161/JAHA.118.010839.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taggart DP, Altman DG, Gray AM, Lees B, Gerry S, Benedetto U, Flather M, Investigators ART. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N Engl J Med. 2016;375:2540–9. https://doi.org/10.1056/NEJMoa1610021.

    Article  PubMed  Google Scholar 

  61. Taggart DP, Benedetto U, Gerry S, Altman DG, Gray AM, Lees B, Gaudino M, Zamvar V, Bochenek A, Buxton B, Choong C, Clark S, Deja M, Desai J, Hasan R, Jasinski M, O'Keefe P, Moraes F, Pepper J, Seevanayagam S, Sudarshan C, Trivedi U, Wos S, Puskas J, Flather M. Arterial revascularization trial i. bilateral versus single internal-thoracic-artery grafts at 10 years. N Engl J Med. 2019;380:437–46. https://doi.org/10.1056/NEJMoa1808783.

    Article  PubMed  Google Scholar 

  62. Lytle BW, Blackstone EH, Loop FD, Houghtaling PL, Arnold JH, Akhrass R, McCarthy PM, Cosgrove DM. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg. 1999;117:855–72. https://doi.org/10.1016/S0022-5223(99)70365-X.

    Article  CAS  PubMed  Google Scholar 

  63. Buttar SN, Yan TD, Taggart DP, Tian DH. Long-term and short-term outcomes of using bilateral internal mammary artery grafting versus left internal mammary artery grafting: a meta-analysis. Heart. 2017;103:1419–26. https://doi.org/10.1136/heartjnl-2016-310864.

    Article  PubMed  Google Scholar 

  64. Rizzoli G, Schiavon L, Bellini P. Does the use of bilateral internal mammary artery (IMA) grafts provide incremental benefit relative to the use of a single IMA graft? A meta-analysis approach. Eur J Cardiothorac Surg. 2002;22:781–6.

    Article  PubMed  Google Scholar 

  65. Taggart DP, D'Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet. 2001;358:870–5. https://doi.org/10.1016/S0140-6736(01)06069-X.

    Article  CAS  PubMed  Google Scholar 

  66. Takagi H, Goto SN, Watanabe T, Mizuno Y, Kawai N, Umemoto T. A meta-analysis of adjusted hazard ratios from 20 observational studies of bilateral versus single internal thoracic artery coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2014;148:1282–90. https://doi.org/10.1016/j.jtcvs.2014.01.010.

    Article  PubMed  Google Scholar 

  67. Weiss AJ, Zhao S, Tian DH, Taggart DP, Yan TD. A meta-analysis comparing bilateral internal mammary artery with left internal mammary artery for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2:390–400. https://doi.org/10.3978/j.issn.2225-319X.2013.07.16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yi G, Shine B, Rehman SM, Altman DG, Taggart DP. Effect of bilateral internal mammary artery grafts on long-term survival: a meta-analysis approach. Circulation. 2014;130:539–45. https://doi.org/10.1161/CIRCULATIONAHA.113.004255.

    Article  PubMed  Google Scholar 

  69. Schwann TA, Habib RH, Wallace A, Shahian DM, O'Brien S, Jacobs JP, Puskas JD, Kurlansky PA, Engoren MC, Tranbaugh RF, Bonnell MR. Operative outcomes of multiple-arterial versus single-arterial coronary bypass grafting. Ann Thorac Surg. 2018;105:1109–19. https://doi.org/10.1016/j.athoracsur.2017.10.058.

    Article  PubMed  Google Scholar 

  70. Thuijs D, Head SJ, Stone GW, Puskas JD, Taggart DP, Serruys PW, Dressler O, Crowley A, Brown WM 3rd, Horkay F, Boonstra PW, Bogats G, Noiseux N, Sabik JF 3rd, Kappetein AP. Outcomes following surgical revascularization with single versus bilateral internal thoracic arterial grafts in patients with left main coronary artery disease undergoing coronary artery bypass grafting: insights from the EXCEL trial. Eur J Cardiothorac Surg. 2018;10:11. https://doi.org/10.1093/ejcts/ezy1291.

    Article  Google Scholar 

  71. Voss B, Bauernschmitt R, Brockmann G, Krane M, Will A, Lange R. Complicated sternal dehiscence: reconstruction with plates, cables, and cannulated screws. Ann Thorac Surg. 2009;87:1304–6. https://doi.org/10.1016/j.athoracsur.2008.08.046.

    Article  PubMed  Google Scholar 

  72. Head SJ, Kaul S, Tijssen JG, Serruys PW, Kappetein AP. Subgroup analyses in trial reports comparing percutaneous coronary intervention with coronary artery bypass surgery. JAMA. 2013;310:2097–8. https://doi.org/10.1001/jama.2013.281630.

    Article  CAS  PubMed  Google Scholar 

  73. Gaudino M, Bakaeen F, Benedetto U, Rahouma M, Di Franco A, Tam DY, Iannaccone M, Schwann TA, Habib R, Ruel M, Puskas JD, Sabik J, Girardi LN, Taggart DP, Fremes SE (2018) Use rate and outcome in bilateral internal thoracic artery grafting: insights from a systematic review and meta-analysis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.009361.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gaudino M, Glieca F, Luciani N, Pragliola C, Tsiopoulos V, Bruno P, Farina P, Bonalumi G, Pavone N, Nesta M, Cammertoni F, Munjal M, Di Franco A, Massetti M. Systematic bilateral internal mammary artery grafting: lessons learned from the CATHolic university extensive BIMA grafting study. Eur J Cardiothorac Surg. 2018;54:702–7. https://doi.org/10.1093/ejcts/ezy148.

    Article  PubMed  Google Scholar 

  75. Gray AM, Murphy J. One-year costs of bilateral or single internal mammary grafts in the Arterial Revascularisation. Trial. 2017;103:1719–26. https://doi.org/10.1136/heartjnl-2016-311058.

    Article  Google Scholar 

  76. Robicsek F, Fokin A, Cook J, Bhatia D. Sternal instability after midline sternotomy. Thorac Cardiovasc Surg. 2000;48:1–8. https://doi.org/10.1055/s-2000-9945.

    Article  CAS  PubMed  Google Scholar 

  77. Kieser TM, Rose MS, Aluthman U, Montgomery M, Louie T, Belenkie I. Toward zero: deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: implications for diabetic patients. J Thorac Cardiovasc Surg. 2014;148:1887–955. https://doi.org/10.1016/j.jtcvs.2014.02.022.

    Article  PubMed  Google Scholar 

  78. Schimmer C, Ozkur M, Sinha B, Hain J, Gorski A, Hager B, Leyh R. Gentamicin-collagen sponge reduces sternal wound complications after heart surgery: a controlled, prospectively randomized, double-blind study. J Thorac Cardiovasc Surg. 2012;143:194–200. https://doi.org/10.1016/j.jtcvs.2011.05.035.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Nenna.

Ethics declarations

Conflict of interest

All authors state no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenna, A., Nappi, F., Dougal, J. et al. Sternal wound closure in the current era: the need of a tailored approach. Gen Thorac Cardiovasc Surg 67, 907–916 (2019). https://doi.org/10.1007/s11748-019-01204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-019-01204-5

Keywords

Navigation