Skip to main content
Log in

Minimally invasive cardiac surgery in Japan: history and current status

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

This review examines the historical and current status of minimally invasive cardiac surgery (MICS) in Japan, based on reports that have been published in English. Although enthusiasm for MICS in Japan increased during the 1990s, it waned during the early 2000s because of various limitations. However, the introduction of minimally invasive mitral valve surgery, aortic valve replacement, atrial septal defect closure, and coronary artery bypass has led to the resurgence of MICS in Japan during recent years. Academic societies and a national registry system will play an important role in ensuring that this new wave of MICS is implemented safely and effectively. Off-the-job training and team building are also key factors for implementing a successful MICS program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckmann A, Funkat AK, Lewandowski J, Frie M, Ernst M, Hekmat K, et al. German Heart Surgery Report 2015: the Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2016;64:462–74.

    Article  PubMed  Google Scholar 

  2. Maehara T, Kokaji K, Yamano M, Shin H, Yozu R, Kawada S. Minimally invasive approach for mitral valve, aortic valve, and atrial septal defect surgery. Nihon Kyobu Geka Gakkai Zasshi. 1997;45:1778–81.

    PubMed  CAS  Google Scholar 

  3. Inoue Y, Yozu R, Mitsumaru A, Ueda T, Hiraki O, Sano Y, et al. Video assisted thoracoscopic and cardioscopic radiofrequency Maze ablation. ASAIO J. 1997;43:334–7.

    Article  PubMed  CAS  Google Scholar 

  4. Shin H, Yozu R, Maehara T, Matayoshi T, Kashima I, Iino Y, et al. Minimally invasive port-access coronary artery bypass grafting. Ann Thorac Cardiovasc Surg. 1999;5:191–3.

    PubMed  CAS  Google Scholar 

  5. Yozu R, Shin H, Maehara T. Minimally invasive cardiac surgery by the port-access method. Artif Organs. 2002;26:430–7.

    Article  PubMed  Google Scholar 

  6. Shin H, Yozu R, Maehara T, Matayoshi T, Morita M, Kawai Y, et al. Vacuum assisted cardiopulmonary bypass in minimally invasive cardiac surgery: its feasibility and effects on hemolysis. Artif Organs. 2000;24:450–3.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuda H, Sawa Y, Takahashi T, Hirata N, Ohtake S. Minimally invasive cardiac surgery: current status and perspective. Artif Organs. 1998;22:759–64.

    Article  PubMed  CAS  Google Scholar 

  8. Casselman FP, Van Slycke S, Dom H, Lambrechts DL, Vermeulen Y, Vanermen H. Endoscopic mitral valve repair: feasible, reproducible, and durable. J Thorac Cardiovasc Surg. 2003;125:273–82.

    Article  PubMed  Google Scholar 

  9. Walther T, Falk V, Mohr FW. Minimally invasive mitral valve surgery. J Cardiovasc Surg (Torino). 2004;45:487–95.

    CAS  Google Scholar 

  10. Motomura N, Miyata H, Tsukihara H, Okada M, Takamoto S, Japan Cardiovascular Surgery Database O. First report on 30-day and operative mortality in risk model of isolated coronary artery bypass grafting in Japan. Ann Thorac Surg. 2008;86:1866–72.

    Article  PubMed  Google Scholar 

  11. Committee for Scientific Affairs TJAfTS, Masuda M, Okumura M, Doki Y, Endo S, Hirata Y, et al. Thoracic and cardiovascular surgery in Japan during 2014: annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2016;64:665–97.

    Article  Google Scholar 

  12. Ito T. Minimally invasive mitral valve surgery through right mini-thoracotomy: recommendations for good exposure, stable cardiopulmonary bypass, and secure myocardial protection. Gen Thorac Cardiovasc Surg. 2015;63:371–8.

    Article  PubMed  Google Scholar 

  13. Sakaguchi T. Minimally invasive mitral valve surgery through a right mini-thoracotomy. Gen Thorac Cardiovasc Surg. 2016;64:699

    Article  PubMed  Google Scholar 

  14. Nishi H, Miyata H, Motomura N, Toda K, Miyagawa S, Sawa Y, et al. Propensity-matched analysis of minimally invasive mitral valve repair using a nationwide surgical database. Surg Today. 2015;45:1144–52.

    Article  PubMed  Google Scholar 

  15. Ito T, Maekawa A, Hoshino S, Hayashi Y, Sawaki S, Yanagisawa J, et al. Three-port (one incision plus two-port) endoscopic mitral valve surgery without robotic assistance. Eur J Cardiothorac Surg. 2017;51:913–18.

    Article  PubMed  Google Scholar 

  16. Okamoto K, Yozu R, Kudo M. Loop-in-loop technique in mitral valve repair via minithoracotomy. Ann Thorac Surg. 2012;93:1329–30.

    Article  PubMed  Google Scholar 

  17. Shibata T. Loop technique for mitral valve repair. Gen Thorac Cardiovasc Surg. 2014;62:71–7.

    Article  PubMed  Google Scholar 

  18. Shibata T, Inoue K, Ikuta T, Bito Y. A workbench to make artificial chordal loops for mitral valve repair. J Thorac Cardiovasc Surg. 2009;138:506–7.

    Article  PubMed  Google Scholar 

  19. Tabata M, Hiraiwa N, Kawano Y, Nakatsuka D, Hoshino S. A simple, effective, and inexpensive technique for exposure of papillary muscles in minimally invasive mitral valve repair: Wakka technique. Ann Thorac Surg. 2015;100:e59–61.

    Article  PubMed  Google Scholar 

  20. Yozu R, Okamoto K, Kudo M, Nonaka H, Adams DH. New innovative instruments facilitate both direct-vision and endoscopic-assisted mini-mitral valve surgery. J Thorac Cardiovasc Surg. 2012;143:82–5.

    Article  Google Scholar 

  21. Kodaira M, Kawamura A, Okamoto K, Kanazawa H, Minakata Y, Murata M, et al. Comparison of clinical outcomes after transcatheter vs. minimally invasive cardiac surgery closure for atrial septal defect. Circ J. 2017;81:543

    Article  PubMed  Google Scholar 

  22. Kitahara H, Okamoto K, Kudo M, Yoshitake A, Ito T, Hayashi K, et al. Alternative peripheral perfusion strategies for safe cardiopulmonary bypass in atrial septal defect closure via a right minithoracotomy approach. Gen Thorac Cardiovasc Surg. 2016;64:131–7.

    Article  PubMed  Google Scholar 

  23. Totsugawa T, Suzuki K, Hiraoka A, Tamura K, Yoshitaka H, Sakaguchi T. Concomitant septal myectomy during minimally invasive aortic valve replacement through a right mini-thoracotomy for the treatment of aortic stenosis with systolic anterior motion of the mitral valve. Gen Thorac Cardiovasc Surg. 2017; 65:657

    Article  PubMed  Google Scholar 

  24. Ito T, Maekawa A, Hoshino S, Hayashi Y. Right infraaxillary thoracotomy for minimally invasive aortic valve replacement. Ann Thorac Surg. 2013;96:715–7.

    Article  PubMed  Google Scholar 

  25. Kikuchi K, Une D, Kurata A, Ruel M. Off-pump minimally invasive coronary artery bypass grafting using the bilateral internal thoracic arteries and the right gastroepiproic artery. Eur J Cardiothorac Surg. 2016;49:1285–6.

    Article  PubMed  Google Scholar 

  26. Kikuchi K, Endo Y. Assistive techniques for proximal anastomosis in minimally invasive coronary artery bypass grafting. Innovations (Phila). 2017;12:224–26.

    Article  Google Scholar 

  27. Matsutani N, Takase B, Ozeki Y, Maehara T, Lee R. Minimally invasive cardiothoracic surgery for atrial fibrillation: a combined Japan–US experience. Circ J. 2008;72:434–6.

    Article  PubMed  Google Scholar 

  28. Ohtsuka T, Ninomiya M, Nonaka T, Hisagi M, Ota T, Mizutani T. Thoracoscopic stand-alone left atrial appendectomy for thromboembolism prevention in nonvalvular atrial fibrillation. Am Coll Cardiol. 2013;62:103–7.

    Article  Google Scholar 

  29. Ishikawa N, Watanabe G, Iino K, Tomita S, Yamaguchi S, Higashidani K, et al. Robotic internal thoracic artery harvesting. Surg Today. 2007;37:944–6.

    Article  PubMed  Google Scholar 

  30. Fujita T, Hata H, Shimahara Y, Sato S, Kobayashi J. Initial experience with internal mammary artery harvesting with the da Vinci Surgical System for minimally invasive direct coronary artery bypass. Surg Today. 2014;44:2281–6.

    Article  PubMed  Google Scholar 

  31. Ishikawa N, Watanabe G, Tomita S, Yamaguchi S, Nishida Y, Iino K. Robot-assisted minimally invasive direct coronary artery bypass grafting. Circ J. 2014;78:399–402.

    Article  PubMed  Google Scholar 

  32. Ishikawa N, Watanabe G, Tarui T, Kiuchi R, Ohtake H, Tomita S, et al. Two-port robotic cardiac surgery (TROCS) for atrial septal defect (ASD) using cross-arm technique—TROCS ASD repair. Circ J. 2015;79:2271–3.

    Article  PubMed  Google Scholar 

  33. Watanabe G, Ishikawa N. Use of barbed suture in robot-assisted mitral valvuloplasty. Ann Thorac Surg. 2015;99:343–5.

    Article  PubMed  Google Scholar 

  34. Tarui T, Ishikawa N, Ohtake H, Watanabe G. Totally endoscopic robotic resection of left atrial myxoma with persistent left superior vena cava. Interact Cardiovasc Thorac Surg. 2016;23:174–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Irisawa Y, Hiraoka A, Totsugawa T, Chikazawa G, Nakajima K, Tamura K, et al. Re-expansion pulmonary oedema after minimally invasive cardiac surgery with right mini-thoracotomy. Eur J Cardiothorac Surg. 2016;49:500–5.

    Article  PubMed  Google Scholar 

  36. Kitahara H, Okamoto K, Kudo M, Yoshitake A, Hayashi K, Inaba Y, et al. Successful management of severe unilateral re-expansion pulmonary edema after mitral valve repair with mini-thoracotomy using extracorporeal membrane oxygenation. Gen Thorac Cardiovasc Surg. 2017;65:164–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Okamoto.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, K. Minimally invasive cardiac surgery in Japan: history and current status. Gen Thorac Cardiovasc Surg 66, 504–508 (2018). https://doi.org/10.1007/s11748-018-0971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-018-0971-5

Keywords

Navigation