General Thoracic and Cardiovascular Surgery

, Volume 66, Issue 10, pp 565–572 | Cite as

Clinical application of postoperative non-invasive positive pressure ventilation after lung cancer surgery

  • Satoru Okada
  • Kazuhiro Ito
  • Junichi Shimada
  • Daishiro Kato
  • Masanori Shimomura
  • Hiroaki Tsunezuka
  • Naoko Miyata
  • Shunta Ishihara
  • Tatsuo Furuya
  • Masayoshi InoueEmail author
Original Article



The purpose of this study was to clarify the clinical efficacy of postoperative non-invasive positive pressure ventilation (PONIV) after pulmonary lobectomy in patients with lung cancer.


From August 2010 and July 2015, 143 patients with lung cancer who underwent pulmonary lobectomy were retrospectively reviewed. PONIV was used immediately after surgery until the morning of postoperative day (POD) 1. Arterial blood gas was analyzed before and just after surgery (POD0) and on POD1. Oxygenation ability was perioperatively assessed by PaO2/FiO2 ratio, alveolar–arterial oxygen difference (A-aDO2), and respiratory index (A-aDO2/PaO2).


112 patients received PONIV. From POD0 to POD1, the PaO2/FiO2 ratio significantly improved in all patients who received PONIV (333 ± 83 to 359 ± 47 mmHg, p = 0.004). Moreover, A-aDO2 and respiratory index significantly decreased following PONIV. PONIV significantly improved the PaO2/FiO2 ratio in patients with PaO2/FiO2 ratio of ≤ 300 on POD0, older age (≥ 70 years), higher body mass index (≥ 25 kg/m2), and longer one-lung ventilation time (≥ 180 min). There was no respiratory failure requiring mechanical ventilation and no mortality.


PONIV effectively improved oxygenation in patients undergoing pulmonary lobectomy in patients with poor status, especially in patients with PaO2/FiO2 ratio of ≤ 300 on POD0. PONIV could be an option of perioperative management for major thoracic surgery.


Non-invasive positive pressure ventilation Lung cancer Surgery Oxygenation 


Compliance with ethical standards

Conflict of interest

There is no conflict of interest to disclose.


  1. 1.
    Pinilla JC, Oleniuk FH, Tan L, Rebeyka I, Tanna N, Wilkinson A, et al. Use of a nasal continuous positive airway pressure mask in the treatment of postoperative atelectasis in aortocoronary bypass surgery. Crit Care Med. 1990;18:836–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Jaber S, Michelet P, Chanques G. Role of non-invasive ventilation (NIV) in the perioperative period. Best Pract Res Clin Anaesthesiol. 2010;24:253–65.CrossRefPubMedGoogle Scholar
  3. 3.
    International Consensus Conferences in Intensive Care Medicine: noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;163:283–91.Google Scholar
  4. 4.
    Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Nava S, Carbone G, DiBattista N, Bellone A, Baiardi P, Cosentini R, et al. Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med. 2003;168:1432–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Ferreyra GP, Baussano I, Squadrone V, Richiardi L, Marchiaro G, Del Sorbo L, et al. Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg. 2008;247:617–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Zoremba M, Kalmus G, Begemann D, Eberhart L, Zoremba N, Wulf H, et al. Short term non-invasive ventilation post-surgery improves arterial blood-gases in obese subjects compared to supplemental oxygen delivery—a randomized controlled trial. BMC Anesthesiol. 2011;11:10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med. 2003;167:1633–40.CrossRefPubMedGoogle Scholar
  10. 10.
    van Kaam AH, Lachmann RA, Herting E, De Jaegere A, van Iwaarden F, Noorduyn LA, et al. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med. 2004;169:1046–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al. Extended Clavien-Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46:668–85.CrossRefPubMedGoogle Scholar
  12. 12.
    ESTS Database Annual Report. Silver Book. 2016. Accessed 1 Apr 2018.
  13. 13.
    Yuan SM. Postperfusion lung syndrome: respiratory mechanics, respiratory indices and biomarkers. Ann Thorac Med. 2015;10:151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13:197–205.CrossRefPubMedGoogle Scholar
  15. 15.
    Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis. 2015;7:943–52.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121:302–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Fernandez FG, Kosinski AS, Burfeind W, Park B, DeCamp MM, Seder C, et al. The society of thoracic surgeons lung cancer resection risk model: higher quality data and superior outcomes. Ann Thorac Surg. 2016;102:370–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Masuda M, Okumura M, Doki Y, Endo S, Hirata Y, Kobayashi J, et al. Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Thoracic and cardiovascular surgery in Japan during 2014: Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2016;64:665–97.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Endo S, Ikeda N, Kondo T, Nakajima J, Kondo H, Yokoi K, et al. Model of lung cancer surgery risk derived from a Japanese nationwide web-based database of 78 594 patients during 2014–2015. Eur J Cardiothorac Surg. 2017;52:1182–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aguilo R, Togores B, Pons S, Rubi M, Barbe F, Agusti AG. Noninvasive ventilatory support after lung resectional surgery. Chest. 1997;112:117–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Perrin C, Jullien V, Venissac N, Berthier F, Padovani B, Guillot F, et al. Prophylactic use of noninvasive ventilation in patients undergoing lung resectional surgery. Respir Med. 2007;101:1572–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Garutti I, Puente-Maestu L, Laso J, Sevilla R, Ferrando A, Frias I, et al. Comparison of gas exchange after lung resection with a Boussignac CPAP or Venturi mask. Br J Anaesth. 2014;112:929–35.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2018

Authors and Affiliations

  • Satoru Okada
    • 1
  • Kazuhiro Ito
    • 1
  • Junichi Shimada
    • 1
  • Daishiro Kato
    • 1
  • Masanori Shimomura
    • 1
  • Hiroaki Tsunezuka
    • 1
  • Naoko Miyata
    • 1
  • Shunta Ishihara
    • 1
  • Tatsuo Furuya
    • 1
  • Masayoshi Inoue
    • 1
    Email author
  1. 1.Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations