Current strategies of spinal cord protection during thoracoabdominal aortic surgery

  • Akiko Tanaka
  • Hazim J. Safi
  • Anthony L. Estrera
Current Topics Review Article
  • 42 Downloads

Abstract

Despite improved survival rates after thoracoabdominal aortic aneurysm repairs, paraplegia remains a devastating complication with high incidence, ranging from 3 to 10%. Ischemic insults to the spinal cord are unavoidable during thoracoabdominal aortic aneurysm repairs. There is no single measure that can prevent paraplegia alone. A multimodality approach is required to minimize the ischemic insults during thoracoabdominal aortic aneurysm repairs and postoperative second hit to the spinal cord. Distal aortic perfusion is important to maintain the collateral network perfusion pressure, while cerebrospinal drainage allows to directly maintain the spinal cord perfusion. Reattachment of segmental arteries T8–T12 is encouraged to lower the incidence of both immediate and delayed paraplegia. Systemic arterial pressure should be maintained above 130 mmHg and cerebrospinal drainage should be continued until the second postoperative day, despite intact neurological status. In this article, we describe our current operative techniques and perioperative management in patients undergoing repairs of thoracoabdominal aortic aneurysm. A review of recent updates on spinal protection strategies is also reported.

Keywords

Thoracoabdominal aortic aneurysm Spinal cord protection Left heart bypass Cerebrospinal drainage Distal aortic perfusion 

Notes

Compliance with ethical standards

Conflict of interest

Dr. Estrera is consultant for WL Gore. The other authors have no disclosures.

References

  1. 1.
    Estrera AL, Sandhu HK, Charlton-Ouw KM, Afifi RO, Azizzadeh A, Miller CC 3rd, et al. A quarter century of organ protection in open thoracoabdominal repair. Ann Surg. 2015;262(4):660–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Okita Y. Fighting spinal cord complication during surgery for thoracoabdominal aortic disease. Gen Thorac Cardiovasc Surg. 2011;59(2):79–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17(2):357–68 (discussion 68–70).CrossRefPubMedGoogle Scholar
  4. 4.
    Safi HJ, Miller CC 3rd, Huynh TT, Estrera AL, Porat EE, Winnerkvist AN, et al. Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair: ten years of organ protection. Ann Surg. 2003;238(3):372–80 (discussion 80–1).PubMedPubMedCentralGoogle Scholar
  5. 5.
    Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83(2):S865–9 (discussion S90–2).Google Scholar
  6. 6.
    Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46(6):651–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Strauch JT, Lauten A, Spielvogel D, Rinke S, Zhang N, Weisz D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004;25(5):708–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Griffiths IR, Pitts LH, Crawford RA, Trench JG. Spinal cord compression and blood flow. I. The effect of raised cerebrospinal fluid pressure on spinal cord blood flow. Neurology. 1978;28(11):1145–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Miyamoto K, Ueno A, Wada T, Kimoto S. A new and simple method of preventing spinal cord damage following temporary occlusion of the thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg (Torino). 1960;1:188–97.Google Scholar
  10. 10.
    Estrera AL, Miller CC 3rd, Porat EE, Huynh TT, Winnerkvist A, Safi HJ. Staged repair of extensive aortic aneurysms. Ann Thorac Surg. 2002;74(5):S1803–5 (discussion S25–32).CrossRefGoogle Scholar
  11. 11.
    Cunningham JN Jr, Laschinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, et al. Measurement of spinal cord ischemia during operations upon the thoracic aorta: initial clinical experience. Ann Surg. 1982;196(3):285–96.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 1997;113(1):87–100 (discussion—1).CrossRefPubMedGoogle Scholar
  13. 13.
    Estrera AL, Sheinbaum R, Miller CC 3rd, Harrison R, Safi HJ. Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg. 2010;140(6 Suppl):S131–5. (discussion S42–S46).Google Scholar
  14. 14.
    Acher CW, Wynn MM. Thoracoabdominal aortic aneurysm. How we do it. Cardiovasc Surg. 1999;7(6):593–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg. 2002;236(4):471–9 (discussion 9).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Safi HJ, Hess KR, Randel M, Iliopoulos DC, Baldwin JC, Mootha RK, et al. Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in repair of thoracoabdominal aortic aneurysm types I and II. J Vasc Surg. 1996;23(2):223–8 (discussion 9).CrossRefPubMedGoogle Scholar
  17. 17.
    Engle J, Safi HJ, Miller CC 3rd, Campbell MP, Harlin SA, Letsou GV, et al. The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair. J Vasc Surg. 1999;29(1):150–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Huynh TT, Miller CC 3rd, Estrera AL, Sheinbaum R, Allen SJ, Safi HJ. Determinants of hospital length of stay after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2002;35(4):648–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Miller CC 3rd, Villa MA, Achouh P, Estrera AL, Azizzadeh A, Coogan SM, et al. Intraoperative skeletal muscle ischemia contributes to risk of renal dysfunction following thoracoabdominal aortic repair. Eur J Cardiothorac Surg. 2008;33(4):691–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Azizzadeh A, Huynh TT, Miller CC 3rd, Estrera AL, Porat EE, Sheinbaum R, et al. Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: a case-control study. J Vasc Surg. 2003;37(4):750–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Sandhu HK, Evans JD, Tanaka A, Atay S, Afifi RO, Charlton-Ouw KM, et al. Fluctuations in spinal cord perfusion pressure: a harbinger of delayed paraplegia after thoracoabdominal aortic repair. Semin Thorac Cardiovasc Surg.  https://doi.org/10.1053/j.semtcvs.2017.05.007.
  22. 22.
    Estrera AL, Sheinbaum R, Miller CC 3rd, Azizzadeh A, Walkes JC, Lee TY, et al. Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management. Ann Thorac Surg. 2009;88:9–15.CrossRefPubMedGoogle Scholar
  23. 23.
    Coady MA, Mitchell RS. Femoro-femoral partial bypass in the treatment of thoracoabdominal aneurysms. Semin Thorac Cardiovasc Surg. 2003;15:340–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Safi HJ, Miller CC 3rd, Subramaniam MH, Campbell MP, Iliopoulos DC, O’Donnell JJ, et al. Thoracic and thoracoabdominal aortic aneurysm repair using cardiopulmonary bypass, profound hypothermia, and circulatory arrest via left side of the chest incision. J Vasc Surg. 1998;28:591–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Shiiya N, Washiyama N, Tsuda K, Yamanaka K, Takahashi D, Yamashita K, et al. Japanese perspective in surgery for thoracoabdominal aortic aneurysms. Gen Thorac Cardiovasc Surg. 2017.  https://doi.org/10.1007/s11748-017-0838-1.
  26. 26.
    Kouchoukos NT, Masetti P, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest in the management of extensive thoracic and thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg. 2003;15:333–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Omura A, Minatoya K, Matsuo J, Inoue Y, Seike Y, Uehara K, et al. Early and late outcomes of open repair for dissecting aneurysms of the descending or thoracoabdominal aorta. Interact Cardiovasc Thorac Surg. 2017;25:950–7.CrossRefGoogle Scholar
  28. 28.
    Corvera J, Copeland H, Blitzer D, et al. Open repair of chronic thoracic and thoracoabdominal aortic dissection using deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 2017;154:389–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Weiss AJ, Lin H-M, Bischoff MS, et al. A propensity score–matched comparison of deep versus mild hypothermia during thoracoabdominal aortic surgery. J Thoracic Cardiovasc Surg 2012;143:186–93.CrossRefGoogle Scholar
  30. 30.
    Sueda T, Okada K, Orihashi K, Sugawara Y, Kouchi K, Imai K. Cold blood spinal cord plegia for prediction of spinal cord ischemia during thoracoabdominal aneurysm repair. Ann Thorac Surg. 2002;73:1155–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Tanaka H, Minatoya K, Matsuda H, Sasaki H, Iba Y, Oda T, et al. Embolism is emerging as a major cause of spinal cord injury after descending and thoracoabdominal aortic repair with a contemporary approach: magnetic resonance findings of spinal cord injury. Interact Cardiovasc Thorac Surg. 2014;19:205–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Cambria RP, Cluose WD, Davidson JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 317 operations performed over a 15-year interval. Ann Surg. 2002;236:471–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Davison JK, Cambria RP, Vierra DJ, Columbia MA, Koustas G. Epidural cooling for regional spinal cord hypothermia during thoracoabdominal aneurysm repair. J Vasc Surg. 1994;20:304–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Shimizu H, Mori A, Yoshitake A, Yamada T, Morisaki H, Okano H, et al. Thoracic and thoracoabdominal aortic repair under regional spinal cord hypothermia. Eur J Cardiothorac Surg. 2014;46:40–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Adamkiewicz A. Die Blutgefasse des menschlichen Ruckenmarkes: II. Die Geffase der Ruckenmarksoberflache. Sitzungsber d k Acad d Wissensch. Wien Math-Naturwiss Ll. 1882;85:101–30.Google Scholar
  36. 36.
    Koshino T, Murakami G, Morishita K, Mawatari T, Abe T. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg. 1999;117:898–905.CrossRefPubMedGoogle Scholar
  37. 37.
    Tanaka H, Ogino H, Minatoya K, Matsui Y, Higami T, Okabayashi H, et al. The impact of preoperative identification of the Adamkiewicz artery on descending and thoracoabdominal aortic repair. J Thorac Cardiovasc Surg. 2016;151:122–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Melissano G, Bertoglio L, Civelli V, Amato AC, Coppi G, Civilini E, et al. Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Eur J Vasc Endovasc Surg. 2009;37:395–400.CrossRefPubMedGoogle Scholar
  39. 39.
    Guzinski M, Bryl M, Zieminska K, Wolny K, Sasiadek M, Garcarek JS. Detection of the Adamkiewicz artery in computed tomography of the thorax and abdomen. Advances in clinical and experimental medicine: official organ. Wroclaw Med Univ. 2017;26:31–7.Google Scholar
  40. 40.
    Amato ACM, Parga Filho JR, Stolf NAG. Influential factors on the evaluation of adamkiewicz artery using a 320-detector row computed tomography device. Ann Vasc Surg. 2017;44:136–45.CrossRefPubMedGoogle Scholar
  41. 41.
    Wynn M, Acher C, Marks E, Acher CW. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2016;64:289–96.CrossRefPubMedGoogle Scholar
  42. 42.
    Safi HJ, Miller CC 3rd, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Afifi RO, Sandhu HK, Zaidi ST, Trinh EK, Tanaka A, Miller CC 3rd, et al. Intercostal artery management in thoracoabdominal aortic surgery: to reattach or not to reattach? J Thorac Cardiovasc Surg. 2018;155(4):1372–8.e1.  https://doi.org/10.1016/j.jtcvs.2017.11.072.CrossRefPubMedGoogle Scholar
  44. 44.
    LeMaire SA, Ochoa LN, Conklin LD, Widman RA, Clubb FJ Jr, Undar A, et al. Transcutaneous near-infrared spectroscopy for detection of regional spinal ischemia during intercostal artery ligation: preliminary experimental results. J Thorac Cardiovasc Surg. 2006;132:1150–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Badner NH, Nicolaou G, Clarke CF, Forbes TL. Use of spinal near-infrared spectroscopy for monitoring spinal cord perfusion during endovascular thoracic aortic repairs. J Cardiothorac Vasc Anesth. 2011;25:316–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Boezeman RP, van Dongen EP, Morshuis WJ, Sonker U, Boezeman EH, Waanders FG, et al. Spinal near-infrared spectroscopy measurements during and after thoracoabdominal aortic aneurysm repair: a pilot study. Ann Thorac Surg. 2015;99:1267–74.CrossRefPubMedGoogle Scholar
  47. 47.
    Luehr M, von Aspern K, Etz CD. Limitations of direct regional spinal cord monitoring using near-infrared spectroscopy: indirect paraspinal collateral network surveillance is the answer! Ann Thorac Surg. 2016;101:1238–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Laschinger JC, Cunningham JN Jr, Cooper MM, Krieger K, Nathan IM, Spencer FC. Prevention of ischemic spinal cord injury following aortic cross-clamping: use of corticosteroids. Ann Thorac Surg. 1984;38:500–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Kanellopoulos GK, Kato H, Wu Y, Dougenis D, Mackey M, Hsu CY, Kouchoukos NT. Neuronal cell death in the ischemic spinal cord: the effect of methylprednisolone. Ann Thorac Surg. 1997;64:1279–85.CrossRefPubMedGoogle Scholar
  50. 50.
    Acher CW, Wynn MM, Hoch JR, Popic P, Archibald J, Turnipseed WE. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J Vasc Surg. 1994;19:236–49.CrossRefPubMedGoogle Scholar
  51. 51.
    Kunihara T, Matsuzaki K, Shiiya N, Saijo Y, Yasuda K. Naloxone lowers cerebrospinal fluid levels of excitatory amino acids after thoracoabdominal aortic surgery. J Vasc Surg. 2004;40:681–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Obrenovitch TP, Richards DA. Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev. 1995;7:1–54.PubMedGoogle Scholar
  53. 53.
    Svensson LG, Stewart RW, Cosgrove DM, Lytle BW, Beven EG, Furlan AJ, et al. Preliminary results and rationale for the use of intrathecal papaverine for the prevention of paraplegia after aortic surgery. S Afr J Surg. 1988;26:153–60.PubMedGoogle Scholar
  54. 54.
    Lima B, Nowicki ER, Blackstone EH, Williams SJ, Roselli EE, Sabik JF. 3rd, et al. Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: the role of intrathecal papaverine. J Thorac Cardiovasc Surg. 2012;143:945–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Okita Y. Surgery for thoracic aortic disease in Japan: evolving strategies toward the growing enemies. Gen Thorac Cardiovasc Surg. 2015;63:185–96.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2018

Authors and Affiliations

  • Akiko Tanaka
    • 1
  • Hazim J. Safi
    • 1
  • Anthony L. Estrera
    • 1
  1. 1.Department of Cardiothoracic and Vascular SurgeryMcGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Memorial Hermann HospitalHoustonUSA

Personalised recommendations